15. треугольник АВС, МН-средняя линия , площадь АМН=21, треугольник АНС , НМ-медиана (АМ=МС), медиана делит треугольник на 2 равновеликих треугольника, площадь АМН=площадь МНС=21, площадь АНС=площадьАМН+площадьМНС=21+21=42, треугольник АВС, АН-медиана (ВН=НС), тогда плошщадь АВН=площадьАНС=42, площадьАВС=площадь АВН+площадьАНС=42+42=84
16. площади подобных многоугольников относятся как периметры в квадрате, 16/49=периметр1 в квадрате/1225, периметр1 в квадрате=16*1225/49=400, периметр1=20
17. треугольник АРД подобен треугольнику ВРС по двум равным углам, уголР-общий, уголА=уголРВС как соответственные, площади подобных треугольников относятся как отношение квадратов подобных сторон, площадь ВРС/площадьАРД=ВС в квадрат/АД в квадрате, площадьВРС/80=9/16, площадьВРС=80*9/16=45, площадьАВСД=площадьАРД-площадьВРС=80-45=35
18, треугольник АВС, АВ=Вс=20, АС=32, проводим высоту ВН=медиане, АН=НС=1/2АС=32/2=16, треугольник АВН прямоугольній, ВН=корень(Ав в квадрате-АН в квадрате)=корень(400-256)=12, tgA=ВН/АН=12/16=3/4=0,75
19. треугольник АВС, уголС=90, ВС=2, АС=4,, АВ=корень(АС в квадрате+ВС в квадрате)=корень(16+4)=2*корень5, cosB=ВС/АВ=2/(2*корень5)=корень5/5
Стереометрическая задача по геометрии по теме Конус. Объем конуса вычисляется по формуле 1/3*Пи*(радиус в квадрате)*Н.
Найдем для начала радиус основания. Если рассмотреть изначально взятый треугольник, то больший из катетов и будет радиусом основания полученного вращением конуса. Вычислим значение радиуса с теоремы пифагора. 100-25=75 Корень из 75 = 5корней_из_3.
Меньший катет при Этом будет равен Высоте конуса, а так как он лежит напротив угла в 30 градусов, то он равен половине гипотенузы, т.е. равен 5. Подставим полученные данные в формулу объема конуса.
15. треугольник АВС, МН-средняя линия , площадь АМН=21, треугольник АНС , НМ-медиана (АМ=МС), медиана делит треугольник на 2 равновеликих треугольника, площадь АМН=площадь МНС=21, площадь АНС=площадьАМН+площадьМНС=21+21=42, треугольник АВС, АН-медиана (ВН=НС), тогда плошщадь АВН=площадьАНС=42, площадьАВС=площадь АВН+площадьАНС=42+42=84
16. площади подобных многоугольников относятся как периметры в квадрате, 16/49=периметр1 в квадрате/1225, периметр1 в квадрате=16*1225/49=400, периметр1=20
17. треугольник АРД подобен треугольнику ВРС по двум равным углам, уголР-общий, уголА=уголРВС как соответственные, площади подобных треугольников относятся как отношение квадратов подобных сторон, площадь ВРС/площадьАРД=ВС в квадрат/АД в квадрате, площадьВРС/80=9/16, площадьВРС=80*9/16=45, площадьАВСД=площадьАРД-площадьВРС=80-45=35
18, треугольник АВС, АВ=Вс=20, АС=32, проводим высоту ВН=медиане, АН=НС=1/2АС=32/2=16, треугольник АВН прямоугольній, ВН=корень(Ав в квадрате-АН в квадрате)=корень(400-256)=12, tgA=ВН/АН=12/16=3/4=0,75
19. треугольник АВС, уголС=90, ВС=2, АС=4,, АВ=корень(АС в квадрате+ВС в квадрате)=корень(16+4)=2*корень5, cosB=ВС/АВ=2/(2*корень5)=корень5/5
Объем конуса вычисляется по формуле
1/3*Пи*(радиус в квадрате)*Н.
Найдем для начала радиус основания.
Если рассмотреть изначально взятый треугольник, то больший из катетов и будет радиусом основания полученного вращением конуса.
Вычислим значение радиуса с теоремы пифагора.
100-25=75
Корень из 75 = 5корней_из_3.
Меньший катет при Этом будет равен Высоте конуса, а так как он лежит напротив угла в 30 градусов, то он равен половине гипотенузы, т.е. равен 5.
Подставим полученные данные в формулу объема конуса.
Объём V=1/3 * пи* R^2 *H=1/3 * пи* 75 * 5=125пи