Знайти відношення площі. найбільшого діагонального перерізу правильної. шистикутеої. призми до площі його основи якщо висота. призми дорівнює стороні основи
Если боковые грани 4-угольной пирамиды равнонаклонены к основанию под углом 45°, то в основании лежит не просто прямоугольник, а квадрат. Сторона с основания равна: с = d*cos 45° = 8*(√2/2) = 4√2 см. Периметр основания Р = 4с = 4*4√2 = 16√2. Апофема А равна: А = (с/2)/cos45° = 2√2/(√2/2) = 4 см. Площадь боковой поверхности Sбок = (1/2)РА = (1/2)*16√2*4 = 32√2 см². Площадь основания So = c² = (4√2)² = 32 см². Площадь полной поверхности пирамиды равна: S = Sбок + Sо = 32√2 + 32 = 32(√2 + 1) = а(√2 + 1)
1) Два угла, у которых одна сторона общая, называются смежными. - нет 2) В любом треугольнике высоты или их продолжения пересекаются в одной точке. - да 3) Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. - да 4) В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой. - да 5) Любой диаметр окружности есть хорда. - да 6) Сумма углов прямоугольного треугольника равна 180. - да 7) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотой треугольника. - нет 8) В треугольнике может быть два тупых угла. - нет 9) Сумма двух сторон треугольника меньше третьей стороны треугольника. - нет 10) Все точки каждой из двух параллельных прямых равноудалены от другой прямой. - да 11) Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и углу другого прямоугольного треугольника, то такие треугольники равны. - да 12) Две прямые, перпендикулярные к третьей, не пересекаются. - да 13)Медиана, проведенная из вершины прямого угла прямоугольного треугольника равна половине гипотенузы. - да
Сторона с основания равна: с = d*cos 45° = 8*(√2/2) = 4√2 см.
Периметр основания Р = 4с = 4*4√2 = 16√2.
Апофема А равна: А = (с/2)/cos45° = 2√2/(√2/2) = 4 см.
Площадь боковой поверхности Sбок = (1/2)РА = (1/2)*16√2*4 = 32√2 см².
Площадь основания So = c² = (4√2)² = 32 см².
Площадь полной поверхности пирамиды равна:
S = Sбок + Sо = 32√2 + 32 = 32(√2 + 1) = а(√2 + 1)
ответ: а = 32, в = 1.
2) В любом треугольнике высоты или их продолжения пересекаются в одной точке. - да
3) Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. - да
4) В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой. - да
5) Любой диаметр окружности есть хорда. - да
6) Сумма углов прямоугольного треугольника равна 180. - да
7) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотой треугольника. - нет
8) В треугольнике может быть два тупых угла. - нет
9) Сумма двух сторон треугольника меньше третьей стороны треугольника. - нет
10) Все точки каждой из двух параллельных прямых равноудалены от другой прямой. - да
11) Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и углу другого прямоугольного треугольника, то такие треугольники равны. - да
12) Две прямые, перпендикулярные к третьей, не пересекаются. - да
13)Медиана, проведенная из вершины прямого угла прямоугольного треугольника равна половине гипотенузы. - да