2.
ABCD - параллелограмм
BC || AD; ED - секущая, тогда
∠ADE=∠DEC=55°(внутренние накрест лежащие)
ΔECD - равнобедренный значит
∠DEC=∠EDC=55°
∠BED=180°-55°=125°(смежные)
∠DEC+∠EDC+∠C=180°(сумма всех углов треугольника)
55°+55°+∠C=180°, отсюда ∠C=70°
∠C=∠А=70°
∠А+∠B=180°(свойство параллелограмма)
70°+∠B=180°, значит ∠B=110°
∠B=∠D=110°
ответ: ∠DEC=∠EDC=55°;∠C=∠А=70°; ∠B=∠D=110°
3.
RM - биссектриса, значит
∠LRM=∠MRS=90°/2=45°
∠LMR=180°-(45°+90°)=45° (сумма всех углов треугольника)
ответ: ∠LRM=∠MRS=45°;∠LMR=45°;∠K=∠S=90°
Вариант 1.
1.
Для начала найдём один из отрезков, полученным, делением гипотенузы высотою: отрезок BD.
Так как это высота, то отрезок образует 2 прямых угла: <BDA; <ADC.
Тоесть образуется 2 прямоугольных треугольника: ΔBDA; ΔADC.
По теореме Пифагора — BC равен:
Чтобы найти всю гипотенузу BC — вычислим оставшийся отрезок DC.
Для этого нам нужна одна из формул вычисления высоты прямоугольного треугольника:
DC = 9; BD = 16 => BC = 9+16 = 25см.
По теореме Пифагора, AC равен:
Косинус угла равен отношению прилежащего катета к гипотенузе, то есть:
Вывод: AC = 21.9см; cos(<C) = 0.876.
Для начала найдём оставшийся стороны паралеллограмма: BD & AD, которые друг другу равны.
Так как BD — перпендикулярен стороне AD — то он образует прямой угол с этой сторон, тоесть: ΔADB — прямоугольный.
Формула вычисления стороны BD, зная угол A, и гипотенузу AB:
Осталось найти сторону AD (по теореме Пифагора), на которой проведена высота BD, чтобы потом найти площадь:
Теперь, формула вычисления площад параллелограмма такова:
Вывод: S = 71.1см².
2.
ABCD - параллелограмм
BC || AD; ED - секущая, тогда
∠ADE=∠DEC=55°(внутренние накрест лежащие)
ΔECD - равнобедренный значит
∠DEC=∠EDC=55°
∠BED=180°-55°=125°(смежные)
∠DEC+∠EDC+∠C=180°(сумма всех углов треугольника)
55°+55°+∠C=180°, отсюда ∠C=70°
∠C=∠А=70°
∠А+∠B=180°(свойство параллелограмма)
70°+∠B=180°, значит ∠B=110°
∠B=∠D=110°
ответ: ∠DEC=∠EDC=55°;∠C=∠А=70°; ∠B=∠D=110°
3.
RM - биссектриса, значит
∠LRM=∠MRS=90°/2=45°
∠LMR=180°-(45°+90°)=45° (сумма всех углов треугольника)
ответ: ∠LRM=∠MRS=45°;∠LMR=45°;∠K=∠S=90°
Вариант 1.
1.
Для начала найдём один из отрезков, полученным, делением гипотенузы высотою: отрезок BD.
Так как это высота, то отрезок образует 2 прямых угла: <BDA; <ADC.
Тоесть образуется 2 прямоугольных треугольника: ΔBDA; ΔADC.
По теореме Пифагора — BC равен:
Чтобы найти всю гипотенузу BC — вычислим оставшийся отрезок DC.
Для этого нам нужна одна из формул вычисления высоты прямоугольного треугольника:
DC = 9; BD = 16 => BC = 9+16 = 25см.
По теореме Пифагора, AC равен:
Косинус угла равен отношению прилежащего катета к гипотенузе, то есть:
Вывод: AC = 21.9см; cos(<C) = 0.876.
2.
Для начала найдём оставшийся стороны паралеллограмма: BD & AD, которые друг другу равны.
Так как BD — перпендикулярен стороне AD — то он образует прямой угол с этой сторон, тоесть: ΔADB — прямоугольный.
Формула вычисления стороны BD, зная угол A, и гипотенузу AB:
Осталось найти сторону AD (по теореме Пифагора), на которой проведена высота BD, чтобы потом найти площадь:
Теперь, формула вычисления площад параллелограмма такова:
Вывод: S = 71.1см².