Зовнішній діаметр порожнистої кулі становить 50 см а товщина стінок 4 см знайти об'єм тіла якщо густина матеріалу з якого виготовлена 4г/сантиметр кубічний
Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
Обозначим ключевые точки как показано на рисунке. Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке). Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба. Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF. DO=OB (по второму свойству ромба) /DOE=/BOF (т.к. они вертикальные) /EDO=/FBO (т.к. это внутренние накрест-лежащие) Следовательно, треугольники DOE и BOF равны по второму признаку. Тогда OE=OF => EF=2*OE=2*1=2 Sромба=EF*CD=2*9=18 ответ: Sромба=18
1. Дан прямоугольник и его диагональ
Рассмотрим треугольник ADC, где угол D - прямой по правилу прямоугольника
Значит треугольник ADC - прямоугольный. В нём известен угол 30 градусов, а мы знаем, что катет, лежащий против угла 30 градусов, равен половине гипотенузы. Значит DC = AC/2 = 4
Теперь найдём катет AD по теореме Пифагора:
AD^2 = AC^2 - DC^2
AD^2 = 64 - 16 = 48
AD = √48 = 4√3 (представили 48, как 16*3 и вынесли корень из 16)
Теперь найдём площадь прямоугольника по формуле: S = ab
S = CD * AD = 4√3 * 4 = 16√3
ответ: 16√3
2. Дан квадрат и его диагональ
Рассмотрим треугольник ABC, где угол B - прямой по правилу квадрата.
Значит треугольник ADC - прямоугольный. Катеты в нём равны, можем обозначить за х
Получается: AB = BC = x
Их можно найти по теореме Пифагора:
AB^2 + BC^2 = AC^2
x^2 + x^2 = 16
2x^2 = 16
x^2 = 8
x = √8 = 2√2 (представили 8, как 4*2 и вынесли корень из 4)
Обе эти стороны равны 2√2, можем найти площадь квадрата по формуле S = a² = (2√2)² = 4 * 2 = 8
ответ: 8
Оставляю эти 2, дальше время поджимает
Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке).
Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба.
Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF.
DO=OB (по второму свойству ромба)
/DOE=/BOF (т.к. они вертикальные)
/EDO=/FBO (т.к. это внутренние накрест-лежащие)
Следовательно, треугольники DOE и BOF равны по второму признаку.
Тогда OE=OF => EF=2*OE=2*1=2
Sромба=EF*CD=2*9=18
ответ: Sромба=18