Пусть ABCD ромб , известен тупой угол : <B = <D > 90° . BH⊥ AD. В прямоугольном треугольнике BAH известны сумма гипотенузы AB и катета BH , а также острые углы <A=180° - <B и <ABH =α =<B -90°(построения этих[ углов не трудно). По этим данным построим ΔBAH . Анализ: допустим, что Δ BAH уже построен ; продолжаем AB на величину BE=BH. < BEH = <BHE =α/2 (=1/2<B -45°). ΔAEH известен ; по стороне AE =AB+BE=AB+BH и двум прилежащим к ней углам. Построим ΔAEH. Точка B(вершина) равноудалена от концов отрезка EH ( BE=BH), т.е. находится на серединном перпендикуляре отрезка EH. Затем ΔAEH дополняем до ромба ABCD .
1. Опустим в треугольнике высоту на гипотенузу и спроектируем ее на плоскость. Эта высота равна ab/c, как широко известно. 2. Имеем вертикальный прямоугольный треугольник с гипотенузой ab/c и углом fi. Расстояние от вершины прямого угла исходного треугольника до плоскости - это противолежащий катет в этом вертикальном треугольнике. Он (катет) равен ab*sin(fi)/c по определению синуса. 3. Тогда другой вертикальный прямоуг. треуг. имеет гипотенузу a, катет ab*sin(fi)/c. А нам нужно найти угол между этой гипотенузой а и прилежащим катетом. По определению все того же синуса угол равен arcsin(b*sin(fi)/c). Короче, ... в твоем случае угол равен arcsin(1/2)=30 градусов.
BH⊥ AD.
В прямоугольном треугольнике BAH известны сумма гипотенузы AB и катета BH , а также острые углы <A=180° - <B и <ABH =α =<B -90°(построения этих[ углов не трудно). По этим данным построим ΔBAH .
Анализ:
допустим, что Δ BAH уже построен ; продолжаем AB на величину BE=BH.
< BEH = <BHE =α/2 (=1/2<B -45°). ΔAEH известен ; по стороне AE =AB+BE=AB+BH и двум прилежащим к ней углам. Построим ΔAEH.
Точка B(вершина) равноудалена от концов отрезка EH ( BE=BH), т.е. находится на серединном перпендикуляре отрезка EH. Затем ΔAEH дополняем до ромба ABCD .
1. Опустим в треугольнике высоту на гипотенузу и спроектируем ее на плоскость. Эта высота равна ab/c, как широко известно.
2. Имеем вертикальный прямоугольный треугольник с гипотенузой ab/c и углом fi. Расстояние от вершины прямого угла исходного треугольника до плоскости - это противолежащий катет в этом вертикальном треугольнике. Он (катет) равен ab*sin(fi)/c по определению синуса.
3. Тогда другой вертикальный прямоуг. треуг. имеет гипотенузу a, катет ab*sin(fi)/c. А нам нужно найти угол между этой гипотенузой а и прилежащим катетом. По определению все того же синуса угол равен arcsin(b*sin(fi)/c).
Короче, ... в твоем случае угол равен arcsin(1/2)=30 градусов.