В прямоугольном тр-ке катет, противолежащий углу 30°, равен половине гипотенузы, значит АВ=46 см. По теореме Пифагора найдем катет АС AC^2=AB^2-BC^2=46^2-23^2=2116-529=1587 AC=23√3 см В прям-ом тр-ке медиана, проведенная к гипотенузе, равна ее половине, и разбивает тр-к на два равнобедренных, т.е. СМ=ВМ=АМ=23 см Рассмотрим тр-к АМС - равнобедренный. Медиана, проведенная к основанию, является также высотой, т.е. МD⟂AC. Т.к. СD=½AC=½*23√3, то MD найдем по теореме Пифагора MD^2=MC^2-CD^2=23^2-(½23√3)^2 MD=23/2
Из вершины угла А, равного 60°, проведена биссектриса АД.
Отрезок СД = 14 см.
Отрезок ВД обозначим х, а катет АВ - у.
Запишем тангенсы углов:
tg АВД = х/у,
tg САВ = (х + 14)/у.
По заданию имеем угол АВД = 30°, угол САВ = 60°.
Тогда х/у = 1/√3,
(х + 14)/у = √3.
Из первого уравнения у = х√3 подставим во второе:
(х + 14)/(х√3) = √3.
Получаем х + 14 = 3х, откуда 2х = 14 и х = 14/2 = 7 см.
Катет АВ = у = х√3 = 7√3 см.
ответ: катеты равны - АВ = 7√3 см, ВС = 7 + 14 = 21 см,
гипотенуза АС = √(147 + 441) = √588 = 14√3 см.
AC^2=AB^2-BC^2=46^2-23^2=2116-529=1587
AC=23√3 см
В прям-ом тр-ке медиана, проведенная к гипотенузе, равна ее половине, и разбивает тр-к на два равнобедренных, т.е. СМ=ВМ=АМ=23 см
Рассмотрим тр-к АМС - равнобедренный. Медиана, проведенная к основанию, является также высотой, т.е. МD⟂AC. Т.к. СD=½AC=½*23√3, то MD найдем по теореме Пифагора
MD^2=MC^2-CD^2=23^2-(½23√3)^2
MD=23/2