Боковое ребро правильной четырехугольной пирамиды равно 10 см и составляет с её высотой угол 30 градусов. Найдите линейный угол двугранного угла при основании пирамиды. -----
Линейным углом двугранного угла называется пересечение двугранного угла и плоскости, перпендикулярной к его ребру,
Величиной двугранного угла называется величина его линейного угла.
Основание О высоты пирамиды совпадает с точкой пересечения диагоналей основания, т.к. все ребра пирамиды равны, значит, равны их проекции.
Плоскость MSH перпендикулярна ребру DA двугранного угла. Искомая величина - угол SMO. Для его нахождения нужно вычислить длину высоты SO пирамиды и ребра основания. Угол ВЅО по условию 30°. Следовательно, ОВ, как противолежащий этому углу катет, равен половине гипотенузы SB. ОВ=5 см. АВ=ОВ√2 как гипотенуза равнобедренного прямоугольного ∆ АОВ. АВ=5√2см SO=SB*cos 30°=5√3 см МН=АВ=5√2 ОМ=МН:2=2,5√2 tg∠SMO=SO:MO= (5√3):2,5√2 tg∠SMO=√6=2,44958 ∠SMO=arctg√6= ≈67º48'
1) А(-5;4) В(3;-2) Найдём координаты вектора АВ( 3-(-5);-2-4) АВ(8;-6) IABI=√(8²+(-6)²=√100=10 2) А(-2;7) В(2;1) С(-7;-5) Найдём координаты и длину вектора АВ : АВ(4;-6) IABI=√(4²+(-6)²=√52=2√13 Найдём координаты и длину вектора ВС: ВС(-9;-6) IBCI=√(-9)²+(-6)²=√117 cosB=(AB·BC)/IABI·IBCI cosB=(4·(-9)+(-6)·(-6))/√52·√117=(-36+36)/√52·117=0 угол В=90 град 3) а(-2;3) b(4;-2) а·b=-2·4+3·(-2)=-8-6=-14 4) IaI=12 IbI=7 α=60 a·b=IaI·IbI·cos60=12·7·cos60=12·7·1|2=42 5) M(6;8) К(-2;7) МК(-2-6;7-8) МК(-8;-1)
IMKI=√((-8)²+(-1)²=√65 6) если векторы перпендикулярны , то их скалярное произведение равно 0 а·b=-5·4+р·(-10) -20-10р=0 -10р=20 р=-2 а(-5;-2) 7)b(4; -7) а(-14;-8) IbI=√4²+(-7)²=√16+49=√65 IaI=√((-14)²+(-8)²)=√260 cos(ab)=(a·b)/IaI·IbI cos(ab)=(-14·4)+(-7)·(-8))/√65·√260=0 cos(ab)=0 , значит угол вежду векторами а и b 90 градусов ( прямой угол ), т. е векторы перпендикулярны 8) а(-2р+3с)-(-4р+2с) р(-1;2) с(2;-3) а(-2р+4р+3с-2с)=(2р+с) а(-2(-1;2)+(2;-3) а(4;-7) IaI=√(4²+(-7)²=√(16+49)=√65
Линейным углом двугранного угла называется пересечение двугранного угла и плоскости, перпендикулярной к его ребру,
Величиной двугранного угла называется величина его линейного угла.
Основание О высоты пирамиды совпадает с точкой пересечения диагоналей основания, т.к. все ребра пирамиды равны, значит, равны их проекции.
Плоскость MSH перпендикулярна ребру DA двугранного угла.Искомая величина - угол SMO.
Для его нахождения нужно вычислить длину высоты SO пирамиды и ребра основания.
Угол ВЅО по условию 30°.
Следовательно, ОВ, как противолежащий этому углу катет, равен половине гипотенузы SB.
ОВ=5 см.
АВ=ОВ√2 как гипотенуза равнобедренного прямоугольного ∆ АОВ.
АВ=5√2см
SO=SB*cos 30°=5√3 см
МН=АВ=5√2
ОМ=МН:2=2,5√2
tg∠SMO=SO:MO= (5√3):2,5√2
tg∠SMO=√6=2,44958
∠SMO=arctg√6= ≈67º48'
АВ(8;-6)
IABI=√(8²+(-6)²=√100=10
2) А(-2;7) В(2;1) С(-7;-5)
Найдём координаты и длину вектора АВ :
АВ(4;-6)
IABI=√(4²+(-6)²=√52=2√13
Найдём координаты и длину вектора ВС:
ВС(-9;-6)
IBCI=√(-9)²+(-6)²=√117
cosB=(AB·BC)/IABI·IBCI
cosB=(4·(-9)+(-6)·(-6))/√52·√117=(-36+36)/√52·117=0
угол В=90 град
3) а(-2;3) b(4;-2) а·b=-2·4+3·(-2)=-8-6=-14
4) IaI=12 IbI=7 α=60
a·b=IaI·IbI·cos60=12·7·cos60=12·7·1|2=42
5) M(6;8) К(-2;7)
МК(-2-6;7-8) МК(-8;-1)
IMKI=√((-8)²+(-1)²=√65
6) если векторы перпендикулярны , то их скалярное произведение равно 0
а·b=-5·4+р·(-10)
-20-10р=0
-10р=20
р=-2
а(-5;-2)
7)b(4; -7) а(-14;-8)
IbI=√4²+(-7)²=√16+49=√65
IaI=√((-14)²+(-8)²)=√260
cos(ab)=(a·b)/IaI·IbI
cos(ab)=(-14·4)+(-7)·(-8))/√65·√260=0
cos(ab)=0 , значит угол вежду векторами а и b 90 градусов ( прямой угол ), т. е векторы перпендикулярны
8) а(-2р+3с)-(-4р+2с) р(-1;2) с(2;-3)
а(-2р+4р+3с-2с)=(2р+с)
а(-2(-1;2)+(2;-3) а(4;-7)
IaI=√(4²+(-7)²=√(16+49)=√65