АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны. Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника. Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ. Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК) а DК = ВС, как противоположные стороны параллелограмма ВСКD. Тогда СМ = 1/2(а + в) А средняя линия как раз и равна 1/2(а+в) Значит, высота равна средней линии
АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны.
Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника.
Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ.
Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК)
а DК = ВС, как противоположные стороны параллелограмма ВСКD.
Тогда
СМ = 1/2(а + в)
А средняя линия как раз и равна 1/2(а+в)
Значит, высота равна средней линии
сделаем построение по условию
дано куб ABCDA1B1C1D1
все стороны равны - обозначим - а
точки K,L,M - середины соответствующих ребер AA1 , A1B1, A1D1 , значит делят ребра пополам на отрезки а/2
все углы в кубе прямые =90 град , значит ∆A1KM ∆A1ML ∆A1LK - прямоугольные
по теореме Пифагора
LM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LM = a/√2
KM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; KM = a/√2
LK^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LK = a/√2
получается , что все стороны в ∆MLK равны LM=KM=LK=a/√2
значит ∆MLK - равносторонний
в равностороннем треугольнике все углы равны 60 град
ОТВЕТ угол MLK =60 град