1. Какое множество понятий однозначно определяет позиционную систему счисления: 1) {базис, алфавит, основание}; 2) {базис, алфавит}; 3) {базис}? 2. Какая последовательность чисел может быть использована в качестве базиса позиционной системы счисления? 3. Какие символы могут быть использованы в качестве цифр системы счисления? 4. В примере 2 были приведены представления чисел 10, 25 и 100 в системах счисления, отличных от десятичной. Можно ли эти числа записать в указанных системах еще и другим или это представление единственно? 5. Запишите десятичные представления чисел: 1. 1011001112; 2. 1AC9F16; 3. 17458; 4. 11001,0112; 5. ED4A,C116$ 6. 147,258.
вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов. такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени. постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, арифмометр, компьютер. несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при простых счётов даже быстрее, чем нерасторопный владелец современного калькулятора. естественно, производительность и скорость счёта современных вычислительных устройств уже давно превосходят возможности самого расчётчика-человека.