1. Що таке система числення? Які типи систем числення ви знаєте? 2. Що таке основа позиційної системи числення?
3. У чому полягає проблема вибору системи числення для подання
чисел у пам'яті комп'ютера?
4. Яка система числення використовується для подання чисел у
пам'яті комп'ютера? Чому?
5. Яким чином здійснюється перевід чисел, якщо основа нової
системи числення дорівнює деякому степеню старої системи числення?
6. За яким правилом переводяться числа з десяткової системи
числення?
7. За яким правилом переводяться числа в десяткову систему
числення?
15. В яких одиницях вимірюється єність інформації?
кілобайт (Кбайт): 1 Кбайт = 1010 байт = 1024 байт;
мегабайт (Мбайт): 1 Мбайт = 1010 Кбайт = 1024 Кбайт;
гігабайт (Гбайт): 1 Гбайт = 1010 Мбайт = 1024 Мбайт;
терабайт (Тбайт): 1 Тбайт = 1010 Гбайт = 1024 Гбайт.
Саме в таких одиницях вимірюється ємність даних в інформатиці.
16. Методи класифікації комп’ютерів? Класифікація за призначенням? Методи класифікації комп'ютерів.
Номенклатура видів комп'ютерів на сьогодні величезна: машини розрізняються за призначенням, потужністю, розмірами, елементною базою і т.д. Тому класифікують ЕОМ за різними ознаками. Слід зауважити, що будь-яка класифікація є певною мірою умовна, оскільки розвиток комп'ютерної науки і техніки настільки стрімкий, що, наприклад, сьогоднішня мікро-ЕОМ не поступається за потужністю міні-ЕОМ п'ятирічної давності і навіть суперкомп'ютерам віддаленішого минулого. Крім того, зарахування комп'ютерів до певного класу досить умовне як через нечіткість розмежування груп, так і в наслідок впровадження в практику замовного складання комп'юерів, коли номенклатуру вузлів і конкретні моделі їх адаптують до вимог замовника. Розглянемо найбільш поширені критерії класифікації комп'ютерів.
Класифікація за призначенням
великі електронно-обчислювальні машини (ЕОМ);
міні ЕОМ;
мікро ЕОМ;
персональні комп'ютери.
17. Яка система числення використовується для подання чисел у памяті комп’ютера? Чому?
Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Звичайною для нас і загальноприйнятою є позиційна десяткова система числення. Як умовні знаки для запису чисел вживаються цифри.
Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною.
Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.
Найпростішим запису натурального числа є зображення його за до відповідної кількості паличок або рисочок. Таким можна користуватися для невеликих чисел.
+Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D -п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.
Объяснение: