Обозначим P,Q,A утверждение что х принадлежит соответствующему отрезку ¬А отрицание А, то есть х не принадлежит А перепишем и упростим исходную формулу P→((Q∧¬A)→P) известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности) тогда: P→(¬(Q∧¬A)∨P) раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности) P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P ¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать остается ¬Q∨A Значит х либо принадлежит А либо не принадлежит Q для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q ответ А=[40,77]
Попробуем доказать равенство методом от противного :
Пусть ¬¬X ≠ X:
Рассмотрим левую часть : ¬¬X ⇔ ¬(¬X)Перепишем это уравнение: ¬(¬X) ≠ X ( по идее это уже можно назвать док-вом)Подставим простое число 1 (чтобы доказать равенство в числах): ¬(¬1) ≠ 1 ⇔ ¬(0) ≠ 1 ⇔ 1 ≠ 1
Получившееся выражение ( 1 ≠ 1 ) не верно , ⇒ ¬¬X = x , ч.т.д
Можно более простым смотря что от вас хотят увидеть) :
Пусть ¬¬X = X:
Преобразуем выражение : ¬¬X = X ⇔ ¬(¬X) = XПрименим инверсию к обеим частям : ¬X = ¬X
Получившееся выражение ( ¬X = ¬X ) верно , ч.т.д
Ну или сразу применить инверсию ко всему выражению (Идея взята у парня в комментариях к вопросу):
¬А отрицание А, то есть х не принадлежит А
перепишем и упростим исходную формулу
P→((Q∧¬A)→P)
известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности)
тогда:
P→(¬(Q∧¬A)∨P)
раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности)
P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P
¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать
остается ¬Q∨A
Значит х либо принадлежит А либо не принадлежит Q
для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q
ответ А=[40,77]
Объяснение:
Достаточно странное задание.
¬¬X = X
Попробуем доказать равенство методом от противного :
Пусть ¬¬X ≠ X:
Рассмотрим левую часть : ¬¬X ⇔ ¬(¬X)Перепишем это уравнение: ¬(¬X) ≠ X ( по идее это уже можно назвать док-вом)Подставим простое число 1 (чтобы доказать равенство в числах): ¬(¬1) ≠ 1 ⇔ ¬(0) ≠ 1 ⇔ 1 ≠ 1Получившееся выражение ( 1 ≠ 1 ) не верно , ⇒ ¬¬X = x , ч.т.д
Можно более простым смотря что от вас хотят увидеть) :
Пусть ¬¬X = X:
Преобразуем выражение : ¬¬X = X ⇔ ¬(¬X) = XПрименим инверсию к обеим частям : ¬X = ¬XПолучившееся выражение ( ¬X = ¬X ) верно , ч.т.д
Ну или сразу применить инверсию ко всему выражению (Идея взята у парня в комментариях к вопросу):
¬(¬¬X) = ¬X ⇔ ¬X = ¬X , ч.т.д