1. 2 Массивы объявляются тем же оператором, что и обычные переменные 2. Не корректный вопрос: индекс - это обращения к определенному элементу массива, а у самого массива индекса нет. В вариантах ответа ничего похожего на это нет. 3. 4 Массивы заполняются теми же операторами, что и обычные переменные 4. 1 Есть такой ввода в бейсике - конструкция READ DATA 5. 1 Выведется четвертый элемент массива, т.к. нумерация идет с нуля, и первый имеет номер 0, второй - 1, третий - 2, а четвертый - номер 3, который и запрашивается в выражении А(3)
В цикле описан алгоритм Евклида: пока числа не равны, из большего вычитается меньшее. Известно, что в результате работы алгоритма Евклида получается наибольший общий делитель двух чисел.
Здесь ищется НОД чисел L = x - 18 и M = x + 36, и должно получиться 9. Если x - 18 делится на 9, то и x делится на 9. Наименьшее число, большее 100 и делящееся на 9, - это 108.
2. Не корректный вопрос: индекс - это обращения к определенному элементу массива, а у самого массива индекса нет. В вариантах ответа ничего похожего на это нет.
3. 4 Массивы заполняются теми же операторами, что и обычные переменные
4. 1 Есть такой ввода в бейсике - конструкция READ DATA
5. 1 Выведется четвертый элемент массива, т.к. нумерация идет с нуля, и первый имеет номер 0, второй - 1, третий - 2, а четвертый - номер 3, который и запрашивается в выражении А(3)
117
Объяснение:
В цикле описан алгоритм Евклида: пока числа не равны, из большего вычитается меньшее. Известно, что в результате работы алгоритма Евклида получается наибольший общий делитель двух чисел.
Здесь ищется НОД чисел L = x - 18 и M = x + 36, и должно получиться 9. Если x - 18 делится на 9, то и x делится на 9. Наименьшее число, большее 100 и делящееся на 9, - это 108.
Проверяем:
L = 108 - 18 = 90 = 5 * 18
M = 108 + 36 = 144 = 8 * 18
Нехорошо, НОД равен 18, а не 9.
Берём следующее делящееся на 9 число, x = 117:
L = 117 - 18 = 99 = 11 * 9
M = 117 + 36 = 153 = 17 * 9
Подходит, НОД(L, M) = 9