Это задача на наименьшее(наибольшее) значение функции.Принцип решения: а) ввести х б) остальные неизвестные величины выразить через х в) составить формулу функции, минимальное( максимальное ) значение которой в задаче имеется. г) исследовaть её на min (max) Пусть разговор идёт про точку М. Её координаты буду х и (6 - х) Расстoяние от начала координат =|ОМ|. Именно ОМ должно быть минимальным. ОМ является функцией от х. Надо ОМ найти. Будем искать по т.Пифагора. ОМ² = х² + (6 - х)² ⇒ ОМ = √(х² + 36 -12х +х²) = √(2х² -12х + 36) Значит, у = √(2х² -12х + 36) Проведём исследование этой функции на min Производная = 1/2√(2х² -12х + 36) · ( 4х - 12) Приравниваем её к нулю. Ищем критические точки 1/2√(2х² -12х + 36) · ( 4х - 12) = 0⇒ 4х - 12 = 0⇒ 4х = 12⇒х = 3 (2х² -12х + 36≠0) -∞ - 3 + +∞ Смотрим знаки производной слева от 3 и справа Производная меняет свой знак с " - " на " + " ⇒ х = 3 - это точка минимума. ответ: точка М имеет координаты (3;3), ОМ = √(9 + 9) = √18 = 3√2
б) остальные неизвестные величины выразить через х
в) составить формулу функции, минимальное( максимальное ) значение которой в задаче имеется.
г) исследовaть её на min (max)
Пусть разговор идёт про точку М. Её координаты буду х и (6 - х)
Расстoяние от начала координат =|ОМ|. Именно ОМ должно быть минимальным. ОМ является функцией от х. Надо ОМ найти. Будем искать по т.Пифагора.
ОМ² = х² + (6 - х)² ⇒ ОМ = √(х² + 36 -12х +х²) = √(2х² -12х + 36)
Значит, у = √(2х² -12х + 36)
Проведём исследование этой функции на min
Производная = 1/2√(2х² -12х + 36) · ( 4х - 12)
Приравниваем её к нулю. Ищем критические точки
1/2√(2х² -12х + 36) · ( 4х - 12) = 0⇒ 4х - 12 = 0⇒ 4х = 12⇒х = 3
(2х² -12х + 36≠0)
-∞ - 3 + +∞
Смотрим знаки производной слева от 3 и справа
Производная меняет свой знак с " - " на " + " ⇒ х = 3 - это точка минимума.
ответ: точка М имеет координаты (3;3), ОМ = √(9 + 9) = √18 = 3√2
#include <iostream>
using namespace std;
int main() {
const int M = 3;
const int N = 4;
int matrix [M][N] = {};
int k,s=0,pr=1;
cout << "Введите k:" << endl;
cin >> k;
for (int i = 0; i < M; i++) { //забиваем матрицу случайными числами
for (int j = 0; j < N; j++) {
matrix[i][j] = rand() % 10;
}
}
for (int i = 0; i < M; i++) { //находим сумму и произведение
s += matrix[i][k-1];
pr *= matrix[i][k-1];
}
for (int i = 0; i < M; i++) { //выводим матрицу на экран
for (int j = 0; j < N; j++) {
cout << matrix[i][j] << " ";
}
cout << endl;
}
cout << s << endl << pr; //выводим на экран сумму и произведение элементов
return 0;
}