Название "алгоритм" произошло от латинской формы имени величайшего среднеазиатского математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), жившего в 783—850 гг. В своей книге "Об индийском счете" он изложил правила записи натуральных чисел с арабских цифр и правила действий над ними "столбиком", знакомые теперь каждому школьнику. В XII веке эта книга была переведена на латынь и получила широкое рас в Европе.
Человек ежедневно встречается с необходимостью следовать тем или иным правилам, выполнять различные инструкции и указания. Например, переходя через дорогу на перекрестке без светофора надо сначала посмотреть направо. Если машин нет, то перейти полдороги, а если машины есть, ждать, пока они пройдут, затем перейти полдороги. После этого посмотреть налево и, если машин нет, то перейти дорогу до конца, а если машины есть, ждать, пока они пройдут, а затем перейти дорогу до конца.
В математике для решения типовых задач мы используем определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.
Сложение одноразрядных двоичных чисел выполняется по следующим правилам:
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10
В последнем случае, при сложении двух единиц, происходит переполнение младшего разряда, и единица переносится в старший разряд. Переполнение возникает в случае, если сумма равна основанию системы счисления (в данном случае это число 2) или больше его (для двоичной системы счисления это не актуально).
Сложим для примера два любых двоичных числа:
1101
+ 101
10010
Вычитание
Вычитание одноразрядных двоичных чисел выполняется по следующим правилам:
0 - 0 = 0
1 - 0 = 1
0 - 1 = (заем из старшего разряда) 1
1 - 1 = 0
Пример:
1110
- 101
1001
Умножение
Умножение одноразрядных двоичных чисел выполняется по следующим правилам:
0 * 0 = 0
1 * 0 = 0
0 * 1 = 0
1 * 1 = 1
Пример:
1110
* 10
+ 0000
1110
11100
Деление
Деление выполняется так же как в десятичной системе счисления:
Название "алгоритм" произошло от латинской формы имени величайшего среднеазиатского математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), жившего в 783—850 гг. В своей книге "Об индийском счете" он изложил правила записи натуральных чисел с арабских цифр и правила действий над ними "столбиком", знакомые теперь каждому школьнику. В XII веке эта книга была переведена на латынь и получила широкое рас в Европе.
Человек ежедневно встречается с необходимостью следовать тем или иным правилам, выполнять различные инструкции и указания. Например, переходя через дорогу на перекрестке без светофора надо сначала посмотреть направо. Если машин нет, то перейти полдороги, а если машины есть, ждать, пока они пройдут, затем перейти полдороги. После этого посмотреть налево и, если машин нет, то перейти дорогу до конца, а если машины есть, ждать, пока они пройдут, а затем перейти дорогу до конца.
В математике для решения типовых задач мы используем определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.
Сложение одноразрядных двоичных чисел выполняется по следующим правилам:
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10
В последнем случае, при сложении двух единиц, происходит переполнение младшего разряда, и единица переносится в старший разряд. Переполнение возникает в случае, если сумма равна основанию системы счисления (в данном случае это число 2) или больше его (для двоичной системы счисления это не актуально).
Сложим для примера два любых двоичных числа:
1101
+ 101
10010
Вычитание
Вычитание одноразрядных двоичных чисел выполняется по следующим правилам:
0 - 0 = 0
1 - 0 = 1
0 - 1 = (заем из старшего разряда) 1
1 - 1 = 0
Пример:
1110
- 101
1001
Умножение
Умножение одноразрядных двоичных чисел выполняется по следующим правилам:
0 * 0 = 0
1 * 0 = 0
0 * 1 = 0
1 * 1 = 1
Пример:
1110
* 10
+ 0000
1110
11100
Деление
Деление выполняется так же как в десятичной системе счисления:
1110 | 10
|
10 | 111
11
10
10
10
0