// PascalABC.NET 3.0, сборка 1139 от 10.01.2016 begin var n:=ReadInteger('Количество элементов в массиве: '); var a:=ArrRandom(n,-50,50); a.Println(','); Writeln('Четные элементы: '); var i:=1; while i<n do begin Write(a[i],' '); Inc(i,2) end; Writeln; Writeln('Нечетные элементы: '); i:=0; while i<n-1 do begin Write(a[i],' '); Inc(i,2) end; Writeln end.
Тестовое решение: Количество элементов в массиве: 10 15,-18,-29,-25,46,21,-8,-17,-9,15 Четные элементы: -18 -25 21 -17 15 Нечетные элементы: 15 -29 46 -8 -9
1. 16-битная арифметика со знаком предполагает, что самый левый бит используется для хранения знака. Отрицательные числа хранятся в дополнительном коде. При этом диапазон представления данных составляет -32768..32767. 32760+9 можно записать как 32767+2. Это позволит избежать перевода 32760 в двоичную систему счисления, а 32767 - это 15 двоичных единиц. В знаковом разряде, конечно же, ноль. После сложения в знаковом разряде появляется единица, что означает наличие отрицательного числа в дополнительном коде. Знаковый разряд мы не трогаем, а остальные инвертируем и арифметически прибавляем к полученному числу единицу. Тем самым переходим к прямому коду, который переводим в десятичную систему представления. И результат, конечно, же, будет со знаком минус, т.е. -32767. Вот к чему приводит переполнение разрядной сетки в целочисленной арифметике. Кстати, аппаратно оно не обнаруживается, поскольку криминала нет - просто +1 переходит в самый старший (левый) разряд. "Железо" ведь не знает, сколько разрядов мы отвели под представление чисел и как биты нужно рассматривать! Соответствующая картинка находится в первом вложении.
2. В восьмибитной арифметике все происходит аналогично. 127 представляется знаковым нулем и семью единицами в остальных разрядах, т.е. 01111111₂. Тройка - это 0..011₂ Складываем и получаем 10000010₂. Опять знаковый разряд единичный, инвертируем остальные: 11111101. А теперь прибавляем единицу и получаем 11111110₂. Числу 1111110₂ (знаковый разряд мы не учитываем) соответствует 126₁₀, а с учетом знака окончательно получаем -126.
3. Тут немного больше нужно повозиться. Арифметика снова 16-битная, диапазон представления чисел -32768..32767. Выпишем факториалы в пределах этого диапазона и одно значение вне его. 1!=1, 2!=2, 3!=6, 4!=24, 5"=120, 6!=720, 7!=5040, 8!=40320. Делаем вывод, что максимальное значение факториала можно вычислить для n=7 и n!=5040. Тогда n+1=8 и при его вычислении у нас возникнет арифметическое переполнение. Переведем число 5040 в двоичную систему и умножим его на 8, поскольку 8! = 7! × 8. Поскольку 8 = 2³, то умножение на 8 в двоичной системе равносильно сдвигу числа влево на три разряда. Подробности приведены на рисунке во втором вложении. Мы получим "странный" результат: 8! = -25216.
begin
var n:=ReadInteger('Количество элементов в массиве: ');
var a:=ArrRandom(n,-50,50);
a.Println(',');
Writeln('Четные элементы: ');
var i:=1;
while i<n do begin Write(a[i],' '); Inc(i,2) end;
Writeln;
Writeln('Нечетные элементы: ');
i:=0;
while i<n-1 do begin Write(a[i],' '); Inc(i,2) end;
Writeln
end.
Тестовое решение:
Количество элементов в массиве: 10
15,-18,-29,-25,46,21,-8,-17,-9,15
Четные элементы:
-18 -25 21 -17 15
Нечетные элементы:
15 -29 46 -8 -9
32760+9 можно записать как 32767+2. Это позволит избежать перевода 32760 в двоичную систему счисления, а 32767 - это 15 двоичных единиц. В знаковом разряде, конечно же, ноль.
После сложения в знаковом разряде появляется единица, что означает наличие отрицательного числа в дополнительном коде. Знаковый разряд мы не трогаем, а остальные инвертируем и арифметически прибавляем к полученному числу единицу. Тем самым переходим к прямому коду, который переводим в десятичную систему представления. И результат, конечно, же, будет со знаком минус, т.е. -32767. Вот к чему приводит переполнение разрядной сетки в целочисленной арифметике. Кстати, аппаратно оно не обнаруживается, поскольку криминала нет - просто +1 переходит в самый старший (левый) разряд. "Железо" ведь не знает, сколько разрядов мы отвели под представление чисел и как биты нужно рассматривать! Соответствующая картинка находится в первом вложении.
2. В восьмибитной арифметике все происходит аналогично. 127 представляется знаковым нулем и семью единицами в остальных разрядах, т.е. 01111111₂. Тройка - это 0..011₂
Складываем и получаем 10000010₂. Опять знаковый разряд единичный, инвертируем остальные: 11111101. А теперь прибавляем единицу и получаем 11111110₂. Числу 1111110₂ (знаковый разряд мы не учитываем) соответствует 126₁₀, а с учетом знака окончательно получаем -126.
3. Тут немного больше нужно повозиться. Арифметика снова 16-битная, диапазон представления чисел -32768..32767.
Выпишем факториалы в пределах этого диапазона и одно значение вне его. 1!=1, 2!=2, 3!=6, 4!=24, 5"=120, 6!=720, 7!=5040, 8!=40320.
Делаем вывод, что максимальное значение факториала можно вычислить для n=7 и n!=5040. Тогда n+1=8 и при его вычислении у нас возникнет арифметическое переполнение. Переведем число 5040 в двоичную систему и умножим его на 8, поскольку 8! = 7! × 8. Поскольку 8 = 2³, то умножение на 8 в двоичной системе равносильно сдвигу числа влево на три разряда. Подробности приведены на рисунке во втором вложении. Мы получим "странный" результат: 8! = -25216.