Из условия Фано следует, что в префиксном неравномерном двоичном коде, предусматривающем однозначное декодирование, ни одно кодовое слово не может быть началом другого.
Таким образом, оставшиеся три кода не могут быть началом кода буквы Б, и началами кодов друг друга.
То есть коды 0 и 00 отпадают сразу, т.к. это начала буквы Б.
Если предположить, что один из кодов равен 1, и что нам нужны кратчайшие коды, значит оставшиеся коды могут быть только 01 и 011.
Если предположить, что коды двузначны, тогда кодами могут быть 01, 10 и 11.
В первом случае суммарная длина кодов равна 1+2+3+3 = 9, во втором случае - 2+2+2+3 = 9.
Оба варианта подходят, кратчайшая суммарная длина - 9
#include <iostream>
#include <cmath>
using namespace std;
signed main()
{
setlocale(LC_ALL, "Rus");
int N;
bool haveZero = false, haveOne = false;
cin >> N;
N = abs(N);
while(N>0){
if(N % 10 == 0)
haveZero = true;
if(N % 10 == 1)
haveOne = true;
N /= 10;
}
cout << "Наличие нуля: " << boolalpha << haveZero << endl;
cout << "Наличие единицы в числе: " << boolalpha << haveOne << endl;
return 0;
}
Таким образом, оставшиеся три кода не могут быть началом кода буквы Б, и началами кодов друг друга.
То есть коды 0 и 00 отпадают сразу, т.к. это начала буквы Б.
Если предположить, что один из кодов равен 1, и что нам нужны кратчайшие коды, значит оставшиеся коды могут быть только 01 и 011.
Если предположить, что коды двузначны, тогда кодами могут быть 01, 10 и 11.
В первом случае суммарная длина кодов равна 1+2+3+3 = 9, во втором случае - 2+2+2+3 = 9.
Оба варианта подходят, кратчайшая суммарная длина - 9