Можно написать программу на каком-либо языке программирования. Например Python:
n = 66 count = 0 for i in range(67): for j in range(34): for k in range(14): for l in range(7): if n == i*1+j*2+k*5+l*10: count += 1 print('Всего
Та же программа на языке Pascal:
var i,j,k,l,n,count:integer;
begin n := 66; count := 0; for i:=0 to 66 do for j:=0 to 33 do for k:=0 to 13 do for l:=0 to 6 do if n = (i*1+j*2+k*5+l*10) then count += 1; writeln('Всего end.
Я уже решал эту задачу. Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку. Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок. На 6-ой день я покупаю вторую духовку. Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку. И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем. То есть, после покупки каждой духовки я начинаю всё с нуля. Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе. Итак, подведем итоги: 1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля. 2) Имея n духовок, мы делаем 584 коробок печенья за trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x. 3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1) T(n) = 6n + 584/(n+1) + 1 --> min T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0 6(n+1)^2 - 584 = 0 (n+1)^2 = 584/6 = 97,33 n + 1 = √97,33 ~ 9,86 = 10 n = 9 Значит, нужно ограничиться покупкой 9 духовок. За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе. Всего мы истратим 54 + 59 = 113 дней.
n = 66
count = 0
for i in range(67):
for j in range(34):
for k in range(14):
for l in range(7):
if n == i*1+j*2+k*5+l*10:
count += 1
print('Всего
Та же программа на языке Pascal:
var i,j,k,l,n,count:integer;
begin
n := 66;
count := 0;
for i:=0 to 66 do
for j:=0 to 33 do
for k:=0 to 13 do
for l:=0 to 6 do
if n = (i*1+j*2+k*5+l*10) then count += 1;
writeln('Всего
end.
ответ: 700
Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку.
Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок.
На 6-ой день я покупаю вторую духовку.
Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку.
И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем.
То есть, после покупки каждой духовки я начинаю всё с нуля.
Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе.
Итак, подведем итоги:
1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля.
2) Имея n духовок, мы делаем 584 коробок печенья за
trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x.
3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min
Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1)
T(n) = 6n + 584/(n+1) + 1 --> min
T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0
6(n+1)^2 - 584 = 0
(n+1)^2 = 584/6 = 97,33
n + 1 = √97,33 ~ 9,86 = 10
n = 9
Значит, нужно ограничиться покупкой 9 духовок.
За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе.
Всего мы истратим 54 + 59 = 113 дней.