Два текста содержат одинаковое количество символов. Первый текст состаален из символов плфавита мощностью 8 , а второй текст- из символов 512 . Ао сколько раз количество символов во втором тексте больше первего текста?
сначала найдём общее количество возможных слов. поскольку на первое место можно поставить любую букву, кроме й, общее количество возможных слов равняется 5 · 5 · 4 · 3 · 2 · 1 = 600. теперь определим, сколько слов содержат сочетание ае. пусть слово начинается с ае, тогда количество вариантов равняется 1 · 1 · 4 · 3 · 2 · 1 = 24. пусть ае это вторая и третья буквы слова, тогда количество вариантов равняется 3 · 1 · 1 · 3 · 2 · 1 = 18. пусть ае это третья и четвёртая буквы слова, тогда количество вариантов равняется 3 · 3 · 1 · 1 · 2 · 1 = 18. в случае, когда ае это четвёртая и пятая буквы слова, количество вариантов равняется 3 · 3 · 2 · 1 · 1 · 1 = 18. в случае, когда ае это пятая и шестая буквы слова, количество вариантов равняется 3 · 3 · 2 · 1 · 1 · 1 = 18. таким образом, количество кодов, которые может составить матвей, равняется 600 − 24 − 18 − 18 − 18 − 18 = 504.
количество цветов в палитре определяется формулой хартли:
n=2^i (где n - количество цветов, i - "вес" 1 px в битах).
1. найдем количество пикселей в изображении: 256*256=2^8 * 2^8 = 2^16 px
2. определим "вес" всех рх, переведя кб в биты: 8*2^13 (бит) = 2^3 * 2^13 = 2^16 (бит)
3. разделим "вес" всего изображения на количество рх (то есть найдем "вес" 1 рх в битах): 1 рх = 2^16 / 2^16 = 1 бит
4. следовательно (см. начало), количество цветов n=2^1=2 (т.е. изображение двухцветное, скорее всего - ч/б.
сначала найдём общее количество возможных слов. поскольку на первое место можно поставить любую букву, кроме й, общее количество возможных слов равняется 5 · 5 · 4 · 3 · 2 · 1 = 600. теперь определим, сколько слов содержат сочетание ае. пусть слово начинается с ае, тогда количество вариантов равняется 1 · 1 · 4 · 3 · 2 · 1 = 24. пусть ае это вторая и третья буквы слова, тогда количество вариантов равняется 3 · 1 · 1 · 3 · 2 · 1 = 18. пусть ае это третья и четвёртая буквы слова, тогда количество вариантов равняется 3 · 3 · 1 · 1 · 2 · 1 = 18. в случае, когда ае это четвёртая и пятая буквы слова, количество вариантов равняется 3 · 3 · 2 · 1 · 1 · 1 = 18. в случае, когда ае это пятая и шестая буквы слова, количество вариантов равняется 3 · 3 · 2 · 1 · 1 · 1 = 18. таким образом, количество кодов, которые может составить матвей, равняется 600 − 24 − 18 − 18 − 18 − 18 = 504.
ответ: 504.