R=A+B+C, где A=53₁₀, B=653₈, C=DA₁₆, R=R₂ Эту задачу можно решать разными выбор зависит от умения решающего выполнять сложение в той или иной системе счисления. Но в любом варианте, сначала нужно представить А, В, С в какой-то одной системе счисления.
Посмотрим, как это будет выглядеть, если пользоваться привычной нам десятичной системой. 653₈ = 6·8²+5·8¹+3·8⁰ = 6·64+5·8+3 = 427 DA₁₆ = 13·16¹+10·16⁰ = 218 R₁₀ = 53+427+218 = 698 Переводим полученное число в двоичную систему, получая R₂: 698/2=349, остаток 0 349/2=174, остаток 1 174/2=87, остаток 0 87/2=43, остаток 1 43/2 =21, остаток 1 21/2=10, остаток 1 10/2=5, остаток 0 5/2=2, остаток 1 2/2=1, остаток 0 1/2=0, остаток 1 Выписываем остатки в обратном порядке: 1010111010. Это и есть ответ.
А теперь допустим, что мы хорошо владеем восьмеричной системой счисления. 1) получим А₈ 53/8=6, остаток 5 6/8=0, остаток 6 Выписываем остатки в обратном порядке: А₈=65 2) получим С₈, для чего перейдем сначала в двоичную систему С₂=1101 1010 (просто заменяем каждую цифру четырьмя двоичными). А теперь разобьем справа налево полученное значение по три разряда и каждую полученную триаду заменим восьмеричной цифрой. 11 011 010₂ = 332₈ 3) Выполним сложение R₈=A₈+B₈+C₈ 65 740 +653 +332
740 1272 Складывать в восьмеричной системе просто, если знать одну маленькую хитрость. 8 отличается от 10 на 2, поэтому и результат сложения в восьмеричной системе на 2 больше, чем в десятичной, если число превышает 7. Смотрим: 5+3=8, но это в десятичной, а в восьмеричной это на 2 больше, т.е. 10. Поэтому мы пишем 0 и +1 идет в следующий разряд. 6+5=11 и еще +1 от переноса, итого 12. Но в восьмеричной на 2 больше, т.е. 14. 4 пишем. +1 перенос. 6 и +1 от переноса - 7. Вот и получили 740. 4) Мы нашли R₈, переходим к R₂. Заменяем каждую восьмеричную цифру тремя двоичными: 1272₈=1 010 111 010₂ Мы получили тот же ответ, что и в предыдущем расчета.
Так что - дело привычки. Второй вариант кажется "непосвященному" сложнее, но на самом деле в нем меньше арифметики и если нет под рукой калькулятора, то может оказаться и быстрее, и удобнее.
var x: array[1..m1, 1..n1] of integer; i, j, m, n, mx, mn: integer;
begin Write('Введите через пробел число строк и столбцов матрицы: '); Readln(m, n); Randomize; writeln(#13#10, 'Исходная матрица'); for i := 1 to m do begin for j := 1 to n do begin x[i, j] := Random(100) - 50; Write(x[i, j]:5) end; Writeln end; for i := 1 to m do begin mx := x[i, 1]; mn := mx; for j := 2 to n do if mx < x[i, j] then mx := x[i, j] else if mn > x[i, j] then mn := x[i, j]; Writeln('В строке ', i, ' мin=', mn, ', max=', mx) end end.
Тестовое решение:
Введите через пробел число строк и столбцов матрицы: 5 8
A=53₁₀,
B=653₈,
C=DA₁₆,
R=R₂
Эту задачу можно решать разными выбор зависит от умения решающего выполнять сложение в той или иной системе счисления. Но в любом варианте, сначала нужно представить А, В, С в какой-то одной системе счисления.
Посмотрим, как это будет выглядеть, если пользоваться привычной нам десятичной системой.
653₈ = 6·8²+5·8¹+3·8⁰ = 6·64+5·8+3 = 427
DA₁₆ = 13·16¹+10·16⁰ = 218
R₁₀ = 53+427+218 = 698
Переводим полученное число в двоичную систему, получая R₂:
698/2=349, остаток 0
349/2=174, остаток 1
174/2=87, остаток 0
87/2=43, остаток 1
43/2 =21, остаток 1
21/2=10, остаток 1
10/2=5, остаток 0
5/2=2, остаток 1
2/2=1, остаток 0
1/2=0, остаток 1
Выписываем остатки в обратном порядке: 1010111010.
Это и есть ответ.
А теперь допустим, что мы хорошо владеем восьмеричной системой счисления.
1) получим А₈
53/8=6, остаток 5
6/8=0, остаток 6
Выписываем остатки в обратном порядке: А₈=65
2) получим С₈, для чего перейдем сначала в двоичную систему
С₂=1101 1010 (просто заменяем каждую цифру четырьмя двоичными).
А теперь разобьем справа налево полученное значение по три разряда и каждую полученную триаду заменим восьмеричной цифрой.
11 011 010₂ = 332₈
3) Выполним сложение R₈=A₈+B₈+C₈
65 740
+653 +332
740 1272
Складывать в восьмеричной системе просто, если знать одну маленькую хитрость. 8 отличается от 10 на 2, поэтому и результат сложения в восьмеричной системе на 2 больше, чем в десятичной, если число превышает 7. Смотрим: 5+3=8, но это в десятичной, а в восьмеричной это на 2 больше, т.е. 10. Поэтому мы пишем 0 и +1 идет в следующий разряд. 6+5=11 и еще +1 от переноса, итого 12. Но в восьмеричной на 2 больше, т.е. 14. 4 пишем. +1 перенос. 6 и +1 от переноса - 7. Вот и получили 740.
4) Мы нашли R₈, переходим к R₂.
Заменяем каждую восьмеричную цифру тремя двоичными:
1272₈=1 010 111 010₂
Мы получили тот же ответ, что и в предыдущем расчета.
Так что - дело привычки. Второй вариант кажется "непосвященному" сложнее, но на самом деле в нем меньше арифметики и если нет под рукой калькулятора, то может оказаться и быстрее, и удобнее.
ответ: 1010111010
m1 = 20;
n1 = 20;
var
x: array[1..m1, 1..n1] of integer;
i, j, m, n, mx, mn: integer;
begin
Write('Введите через пробел число строк и столбцов матрицы: ');
Readln(m, n);
Randomize;
writeln(#13#10, 'Исходная матрица');
for i := 1 to m do
begin
for j := 1 to n do
begin
x[i, j] := Random(100) - 50;
Write(x[i, j]:5)
end;
Writeln
end;
for i := 1 to m do
begin
mx := x[i, 1]; mn := mx;
for j := 2 to n do
if mx < x[i, j] then mx := x[i, j]
else if mn > x[i, j] then mn := x[i, j];
Writeln('В строке ', i, ' мin=', mn, ', max=', mx)
end
end.
Тестовое решение:
Введите через пробел число строк и столбцов матрицы: 5 8
Исходная матрица
14 35 4 16 44 -14 47 36
-23 -40 16 43 40 48 21 46
23 30 -18 25 -43 -5 -3 37
24 -26 9 -37 36 23 -33 36
30 46 17 -18 -34 -35 36 28
В строке 1 мin=-14, max=47
В строке 2 мin=-40, max=48
В строке 3 мin=-43, max=37
В строке 4 мin=-37, max=36
В строке 5 мin=-35, max=46