Для данной сортировки используем алгоритм сортировки слиянием
В начале разбиваем арбузы на 2 группы по 2Каждую группу взвешиваем и сортируем (т.е. всего 2 взвешивания)Теперь собираем вместе, сравниваем сначала более легкие арбузы и находим самый легкий (всего 3 взвешивания)Теперь сравниваем тяжелый арбуз, что в группе с самым легким и более легкий из другой группы, и определяем второй по легкости (всего 4 взвешивания)Потом взвешиваем оставшиеся арбузы и докладываем их по порядку (всего 5 взвешивания)
Вообще то, это задача чисто математическая. Пусть есть трехзначное число abc. По условию:
abc + abc
bca Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений: 2c = a +16 2b +1 = c + 16 2a + 1 = b равносильная ей система 2с = a + 16 c = 2b - 15 b = 2a + 1 подставляем третье во второе, получаем первые два уравнения 2с = a + 16 c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13 13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16) -> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
Для данной сортировки используем алгоритм сортировки слиянием
В начале разбиваем арбузы на 2 группы по 2Каждую группу взвешиваем и сортируем (т.е. всего 2 взвешивания)Теперь собираем вместе, сравниваем сначала более легкие арбузы и находим самый легкий (всего 3 взвешивания)Теперь сравниваем тяжелый арбуз, что в группе с самым легким и более легкий из другой группы, и определяем второй по легкости (всего 4 взвешивания)Потом взвешиваем оставшиеся арбузы и докладываем их по порядку (всего 5 взвешивания)По условию:
abc
+ abc
bca
Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений:
2c = a +16
2b +1 = c + 16
2a + 1 = b
равносильная ей система
2с = a + 16
c = 2b - 15
b = 2a + 1
подставляем третье во второе, получаем первые два уравнения
2с = a + 16
c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13
13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16)
-> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca