1000111(2)= 1∙2^6+0∙2^5+0∙2^4+0∙2^3+1∙2^2+1∙2^1+1∙2^0 = 64+0+0+0+4+2+1 = 71(10)
110011001100(2)=1∙2^11+1∙2^10+0∙2^9+0∙2^8+1∙2^7+1∙2^6+0∙2^5+0∙2^4+1∙2^3+1∙2^2+0∙2^1+0∙2^0 = 2048+1024+0+0+128+64+0+0+8+4+0+0 = 3276(10)
1234(8)= 1∙8^3+2∙8^2+3∙8^1+4∙8^0 = 512+128+24+4 = 668(10)
1370(8)= 1∙8^3+3∙8^2+7∙8^1+0∙8^0 = 512+192+56+0 = 760(10)
1000111(2)= 1∙2^6+0∙2^5+0∙2^4+0∙2^3+1∙2^2+1∙2^1+1∙2^0 = 64+0+0+0+4+2+1 = 71(10)
110011001100(2)=1∙2^11+1∙2^10+0∙2^9+0∙2^8+1∙2^7+1∙2^6+0∙2^5+0∙2^4+1∙2^3+1∙2^2+0∙2^1+0∙2^0 = 2048+1024+0+0+128+64+0+0+8+4+0+0 = 3276(10)
1234(8)= 1∙8^3+2∙8^2+3∙8^1+4∙8^0 = 512+128+24+4 = 668(10)
1370(8)= 1∙8^3+3∙8^2+7∙8^1+0∙8^0 = 512+192+56+0 = 760(10)