Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
{\displaystyle k}k — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть
описывается линейной функцией:
{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где
{\displaystyle k}k — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:
Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
{\displaystyle {n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}}{n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}, [возможных состояний (кодов)], где:
{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
{\displaystyle k}k — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть
описывается линейной функцией:
{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где
{\displaystyle k}k — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:
{\displaystyle N_{kp}(k)=k+1=8+1=9}N_{{kp}}(k)=k+1=8+1=9, [возможных состояний (кодов)].
В случае позиционного кода, число комбинаций (кодов) k-разрядного двоичного кода равно числу размещений с повторениями:
{\displaystyle N_{p}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}}N_{{p}}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}, где
{\displaystyle \ k}\ k — число разрядов двоичного кода.
Объяснение:
1.
Текстовая — передаваемая в виде символов;
Числовая — в виде цифр и знаков;
Графическая — в виде изображений, событий, предметов, графиков.
Звуковая — устная или в виде записи передача лексем (слово, выражение, оборот речи) языка аудиальным путём
3
Особенности и преимущества Inkscape:
Особенности и преимущества Vectr:
К минусам программы относят англоязычный интерфейс. ...
Особенности и преимущества Gravit Designer:
Особенности и преимущества GIMP:
Особенности и преимущества Krita:
со 2 и 4 не могу Объяснение: