Унарная система счисления – система счисления с основанием 1. Используется, например, при подсчёте небольшого количества предметов: когда подсчитывается очередной предмет ставится единица (или зарубка, черточка, точка или любая другая отметка, также можно откладывать камешки, например). Количество таких единиц совпадает с количеством предметов.
Позиционная система счисления – система счисления, в которой значение цифры зависит от места, на котором она стоит. Например, в десятичной системе стоимость цифры возрастает в 10 раз, если она сдвигается на одну позицию влево: 1 в записи числа 321 означает просто один, а в числе 213 – уже 10.
Непозиционная система счисления – система счисления, в которой значение цифры не зависит от того места, на котором она стоит. Обычно примером непозиционной системы счисления называют римские числа, хотя это не совсем верно: если цифра с меньшим номиналом стоит перед цифрой с большим номиналом, то её значение вычитается из большей цифры, например, XI = 11, но IX = 10 - 1 = 9. Другие примеры – древнеегипетские числа, числа племён майя.
Нахождение площади труегольника: 1. Формула площади треугольника по стороне и высоте S = 1a · h2 2.Нахождение площади трекгольника по всем сторонам(Формула Герона) √S = √p(p - a)(p - b)(p - c)(все под корнем идет) 3.Формла площади трекгольника по 2-ум сторонам и углу между ними S = 1a · b · sin γ2 4.Формула нахождения площади трегольника по трем сторонам и радиусу описанной окружности S = a · b · с/4R 5.Формула площади трекгольника по трем сторонам и радиусу вписанной окружности S = p·r Нахождение площади прямоугольника: 1.Нахождение площади прямоугольника(одну сторону умножаем на другую,то есть ту которая длинная и которая короткая друг на друга) S = a · b Нахождение площади паралелограма: 1.Формула площади параллелограмма по длине стороны и высоте S = a · h 2.Формула площади параллелограмма по двум сторонам и углу между ними S = a · b · sin α Обращайся!
Унарная система счисления – система счисления с основанием 1. Используется, например, при подсчёте небольшого количества предметов: когда подсчитывается очередной предмет ставится единица (или зарубка, черточка, точка или любая другая отметка, также можно откладывать камешки, например). Количество таких единиц совпадает с количеством предметов.
Позиционная система счисления – система счисления, в которой значение цифры зависит от места, на котором она стоит. Например, в десятичной системе стоимость цифры возрастает в 10 раз, если она сдвигается на одну позицию влево: 1 в записи числа 321 означает просто один, а в числе 213 – уже 10.
Непозиционная система счисления – система счисления, в которой значение цифры не зависит от того места, на котором она стоит. Обычно примером непозиционной системы счисления называют римские числа, хотя это не совсем верно: если цифра с меньшим номиналом стоит перед цифрой с большим номиналом, то её значение вычитается из большей цифры, например, XI = 11, но IX = 10 - 1 = 9. Другие примеры – древнеегипетские числа, числа племён майя.
1. Формула площади треугольника по стороне и высоте
S = 1a · h2
2.Нахождение площади трекгольника по всем сторонам(Формула Герона)
√S = √p(p - a)(p - b)(p - c)(все под корнем идет)
3.Формла площади трекгольника по 2-ум сторонам и углу между ними
S = 1a · b · sin γ2
4.Формула нахождения площади трегольника по трем сторонам и радиусу описанной окружности
S = a · b · с/4R
5.Формула площади трекгольника по трем сторонам и радиусу вписанной окружности
S = p·r
Нахождение площади прямоугольника:
1.Нахождение площади прямоугольника(одну сторону умножаем на другую,то есть ту которая длинная и которая короткая друг на друга)
S = a · b
Нахождение площади паралелограма:
1.Формула площади параллелограмма по длине стороны и высоте
S = a · h
2.Формула площади параллелограмма по двум сторонам и углу между ними
S = a · b · sin α
Обращайся!