Саме в таких одиницях вимірюється ємність даних в інформатиці.
16. Методи класифікації комп’ютерів? Класифікація за призначенням? Методи класифікації комп'ютерів.
Номенклатура видів комп'ютерів на сьогодні величезна: машини розрізняються за призначенням, потужністю, розмірами, елементною базою і т.д. Тому класифікують ЕОМ за різними ознаками. Слід зауважити, що будь-яка класифікація є певною мірою умовна, оскільки розвиток комп'ютерної науки і техніки настільки стрімкий, що, наприклад, сьогоднішня мікро-ЕОМ не поступається за потужністю міні-ЕОМ п'ятирічної давності і навіть суперкомп'ютерам віддаленішого минулого. Крім того, зарахування комп'ютерів до певного класу досить умовне як через нечіткість розмежування груп, так і в наслідок впровадження в практику замовного складання комп'юерів, коли номенклатуру вузлів і конкретні моделі їх адаптують до вимог замовника. Розглянемо найбільш поширені критерії класифікації комп'ютерів.
Класифікація за призначенням
великі електронно-обчислювальні машини (ЕОМ);
міні ЕОМ;
мікро ЕОМ;
персональні комп'ютери.
17. Яка система числення використовується для подання чисел у памяті комп’ютера? Чому?
Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Звичайною для нас і загальноприйнятою є позиційна десяткова система числення. Як умовні знаки для запису чисел вживаються цифри.
Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною.
Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.
Найпростішим запису натурального числа є зображення його за до відповідної кількості паличок або рисочок. Таким можна користуватися для невеликих чисел.
+Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D -п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.
#include <iostream>
using namespace std;
int main()
{
int line, column;
cout << "Введите количество строк и столбцов через пробел: ";
cin >> line >> column;
int array[50][50] = {};
cout << "Введите элементы двумерного массива: \n";
for (int i = 0; i < line; i++ )
{
for (int j = 0; j < column; j++)
{
cin >> array[i][j];
}
}
int max = array[0][1];
int line_number = 1;
for (int i = 0; i < line; i++)
{
int j = 1;
if (max < array[i][j])
{
max = array[i][j];
line_number = i + 1;
}
}
cout << line_number;
}
Объяснение:
#include <iostream> // Библиотека ввода - вывода
using namespace std; // Пространство имен
int main()
{
int line, column; // Создание целочисленных переменных, отвечающих за количество строк и столбцов в двумерном массиве
cout << "Введите количество строк и столбцов через пробел: "; // Вывод сообщения в консоль
cin >> line >> column; // Ввод количества строк и столбцов с клавиатуры
int array[50][50] = {}; // Создание целочисленного массива размером 50х50
cout << "Введите элементы двумерного массива: \n"; // Вывод сообщения в консоль
for (int i = 0; i < line; i++ ) // Цикл для ввода элементов массива
{
for (int j = 0; j < column; j++) // Цикл для ввода элементов массива
{
cin >> array[i][j]; // Ввод элементов массива
}
}
int max = array[0][1]; // Присваиваем переменной, хранящей максимум, значение массива в 0 строке и 1 столбце
int line_number = 1; // Переменная, хранящая номер строки
for (int i = 0; i < line; i++) // Цикл для прогона значений 2-го столбца
{
int j = 1; // // Нужны значения определенного столбца ⇒ значение переменной j будет постоянным
if (max < array[i][j]) // Если значение переменной max < значения массива i строки и j столбца
{
max = array[i][j]; // Значение переменной max = значению массива i строки и j столбца
line_number = i + 1; // Номер строки = индекс строки + 1 (т. к. индексация начинается с нуля)
}
}
cout << line_number; // Вывод ответа
}
15. В яких одиницях вимірюється єність інформації?
кілобайт (Кбайт): 1 Кбайт = 1010 байт = 1024 байт;
мегабайт (Мбайт): 1 Мбайт = 1010 Кбайт = 1024 Кбайт;
гігабайт (Гбайт): 1 Гбайт = 1010 Мбайт = 1024 Мбайт;
терабайт (Тбайт): 1 Тбайт = 1010 Гбайт = 1024 Гбайт.
Саме в таких одиницях вимірюється ємність даних в інформатиці.
16. Методи класифікації комп’ютерів? Класифікація за призначенням? Методи класифікації комп'ютерів.
Номенклатура видів комп'ютерів на сьогодні величезна: машини розрізняються за призначенням, потужністю, розмірами, елементною базою і т.д. Тому класифікують ЕОМ за різними ознаками. Слід зауважити, що будь-яка класифікація є певною мірою умовна, оскільки розвиток комп'ютерної науки і техніки настільки стрімкий, що, наприклад, сьогоднішня мікро-ЕОМ не поступається за потужністю міні-ЕОМ п'ятирічної давності і навіть суперкомп'ютерам віддаленішого минулого. Крім того, зарахування комп'ютерів до певного класу досить умовне як через нечіткість розмежування груп, так і в наслідок впровадження в практику замовного складання комп'юерів, коли номенклатуру вузлів і конкретні моделі їх адаптують до вимог замовника. Розглянемо найбільш поширені критерії класифікації комп'ютерів.
Класифікація за призначенням
великі електронно-обчислювальні машини (ЕОМ);
міні ЕОМ;
мікро ЕОМ;
персональні комп'ютери.
17. Яка система числення використовується для подання чисел у памяті комп’ютера? Чому?
Сукупність прийомів та правил найменування й позначення чисел називається системою числення. Звичайною для нас і загальноприйнятою є позиційна десяткова система числення. Як умовні знаки для запису чисел вживаються цифри.
Система числення, в якій значення кожної цифри в довільному місці послідовності цифр, яка означає запис числа, не змінюється, називається непозиційною. Система числення, в якій значення кожної цифри залежить від місця в послідовності цифр у записі числа, називається позиційною.
Щоб визначити число, недостатньо знати тип і алфавіт системи числення. Для цього необхідно ще додати правила, які дають змогу за значеннями цифр встановити значення числа.
Найпростішим запису натурального числа є зображення його за до відповідної кількості паличок або рисочок. Таким можна користуватися для невеликих чисел.
+Наступним кроком було винайдення спеціальних символів (цифр). У непозиційній системі кожен знак у запису незалежно від місця означає одне й те саме число. Добре відомим прикладом непозиційної системи числення є римська система, в якій роль цифр відіграють букви алфавіту: І - один, V - п'ять, Х - десять, С - сто, Z - п'ятдесят, D -п'ятсот, М - тисяча. Наприклад, 324 = СССХХІV. У непозиційній системі числення незручно й складно виконувати арифметичні операції.
Объяснение: