Напишите эффективную программу, которая по двум данным натуральным числам x и y,не превосходящим 10000, выводит на экран и подсчитывает количество натуральных чисел, кратных пяти, на отрезке [x,y] ( включая концы отрезка)
Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
{\displaystyle k}k — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть
описывается линейной функцией:
{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где
{\displaystyle k}k — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:
Лента в Microsoft Word позволяет максимально быстро получить доступ к наиболее часто используемым командам. Лента содержит огромное количество команд, которые разбиты по смысловым группам. В этом уроке Вы узнаете, из каких вкладок состоит Лента, а также научитесь скрывать ее, чтобы увеличить рабочую область Word на экране монитора.
Если Вы ранее пользовались Word 2010 или 2007, тогда Word 2013 покажется Вам знакомым. В нем используются все те же Лента и Панель быстрого доступа, где можно найти команды для наиболее часто используемых задач, а также представление Backstage.
Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
{\displaystyle {n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}}{n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}, [возможных состояний (кодов)], где:
{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
{\displaystyle k}k — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть
описывается линейной функцией:
{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где
{\displaystyle k}k — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:
{\displaystyle N_{kp}(k)=k+1=8+1=9}N_{{kp}}(k)=k+1=8+1=9, [возможных состояний (кодов)].
В случае позиционного кода, число комбинаций (кодов) k-разрядного двоичного кода равно числу размещений с повторениями:
{\displaystyle N_{p}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}}N_{{p}}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}, где
{\displaystyle \ k}\ k — число разрядов двоичного кода.
Объяснение:
Лента в Microsoft Word позволяет максимально быстро получить доступ к наиболее часто используемым командам. Лента содержит огромное количество команд, которые разбиты по смысловым группам. В этом уроке Вы узнаете, из каких вкладок состоит Лента, а также научитесь скрывать ее, чтобы увеличить рабочую область Word на экране монитора.
Если Вы ранее пользовались Word 2010 или 2007, тогда Word 2013 покажется Вам знакомым. В нем используются все те же Лента и Панель быстрого доступа, где можно найти команды для наиболее часто используемых задач, а также представление Backstage.
Объяснение: