Заметим, что в первом уравнении не может встретиться сочетание 10, иначе следование, а значит, и вся конъюнкция даст ложный результат. То есть если где-то встретится единица, то после неё должна идти единица. Значит, первому уравнению удовлетворяют все возможные наборы, где сначала идут нули, а затем — единицы:
0000000000
0000000001
0000000011
...
0111111111
1111111111 — 11 решений.
Рассмотрим второе уравнение. Если x₅ = x₆, то из наборов первого уравнения подходят все, кроме одного, где x₅ = 0, а x₆ = 1. Во всех остальных случаях либо x₅ = x₆ = 0, либо x₅ = x₆ = 1.
10
Объяснение:
Заметим, что в первом уравнении не может встретиться сочетание 10, иначе следование, а значит, и вся конъюнкция даст ложный результат. То есть если где-то встретится единица, то после неё должна идти единица. Значит, первому уравнению удовлетворяют все возможные наборы, где сначала идут нули, а затем — единицы:
0000000000
0000000001
0000000011
...
0111111111
1111111111 — 11 решений.
Рассмотрим второе уравнение. Если x₅ = x₆, то из наборов первого уравнения подходят все, кроме одного, где x₅ = 0, а x₆ = 1. Во всех остальных случаях либо x₅ = x₆ = 0, либо x₅ = x₆ = 1.
Итого система имеет 10 решений.
x1 x2 x3 x4 x2∧x4 ¬x1 ¬x1∨x3 x2∧x4∧(¬x1∨x3) ¬x2∧x4∧(¬x1∨x3) ¬x1∧x2 ¬x3 ¬x1∧x2∧¬x3 x4∨¬x1∧x2∧¬x3 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3) x1∧x2 ¬x1∧x2 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3)∧¬x1∧x2 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3)∧¬x1∧x2≡1
0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1
0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0
0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1
1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0
1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0
Объяснение:
вроде так