Экспоненциа́льная за́пись — представление действительных чисел в виде мантиссы и порядка. Удобна при представлении очень больших и очень малых чисел, а также для унификации их написания.
{\displaystyle N=M\cdot n^{p}} N=M\cdot n^{p}, где
1 000 000 (один миллион): {\displaystyle 1{,}0\cdot 10^{6}} 1{,}0\cdot 10^{6}; N = 1 000 000, M = 1,0, n = 10, p = 6.
1 201 000 (один миллион двести одна тысяча): {\displaystyle 1{,}201\cdot 10^{6}} 1{,}201\cdot 10^{6}; N = 1 201 000, M = 1,201, n = 10, p = 6.
−1 246 145 000 (минус один миллиард двести сорок шесть миллионов сто сорок пять тысяч): {\displaystyle -1{,}246145\cdot 10^{9}} -1{,}246145\cdot 10^{9}; N = −1 246 145 000, M = −1,246145, n = 10, p = 9.
0,000001 (одна миллионная): {\displaystyle 1{,}0\cdot 10^{-6}} 1{,}0\cdot 10^{{-6}}; N = 0,000001, M = 1,0, n = 10, p = −6.
0,000000231 (двести тридцать одна миллиардная): {\displaystyle 231\cdot 10^{-9}=2{,}31\cdot 100\cdot 10^{-9}=2{,}31\cdot 10^{2}\cdot 10^{-9}=2{,}31\cdot 10^{-9+2}=2{,}31\cdot 10^{-7}} 231\cdot 10^{{-9}}=2{,}31\cdot 100\cdot 10^{{-9}}=2{,}31\cdot 10^{2}\cdot 10^{{-9}}=2{,}31\cdot 10^{{-9+2}}=2{,}31\cdot 10^{{-7}}; N = 0,000000231, M = 2,31, n = 10, p = −7.
const
handsfree = false;
nmax = 10;
random_min = -50;
random_max = 50;
var
a: array[0..nmax] of real;
i, n: integer;
sum, x: real;
begin
{ввод массива}
n := nmax;
if handsfree then begin
for i := 0 to n do
begin
a[i] := random(random_max - random_min) + random_min;
write(a[i], ' ');
end
end
else begin
for i := 0 to n do
readln(a[i]);
end;
writeln();
{подсчет суммы}
write('x = ');
readln(x);
sum := a[n];
for i := n - 1 downto 0 do
sum := sum * x + a[i];
writeln('S = ', sqrt(sum));
end.
Экспоненциа́льная за́пись — представление действительных чисел в виде мантиссы и порядка. Удобна при представлении очень больших и очень малых чисел, а также для унификации их написания.
{\displaystyle N=M\cdot n^{p}} N=M\cdot n^{p}, где
N — записываемое число;
M — мантисса;
n — основание показательной функции;
p (целое) — порядок;
{\displaystyle n^{p}} n^{p} — характеристика числа.
Примеры:
1 000 000 (один миллион): {\displaystyle 1{,}0\cdot 10^{6}} 1{,}0\cdot 10^{6}; N = 1 000 000, M = 1,0, n = 10, p = 6.
1 201 000 (один миллион двести одна тысяча): {\displaystyle 1{,}201\cdot 10^{6}} 1{,}201\cdot 10^{6}; N = 1 201 000, M = 1,201, n = 10, p = 6.
−1 246 145 000 (минус один миллиард двести сорок шесть миллионов сто сорок пять тысяч): {\displaystyle -1{,}246145\cdot 10^{9}} -1{,}246145\cdot 10^{9}; N = −1 246 145 000, M = −1,246145, n = 10, p = 9.
0,000001 (одна миллионная): {\displaystyle 1{,}0\cdot 10^{-6}} 1{,}0\cdot 10^{{-6}}; N = 0,000001, M = 1,0, n = 10, p = −6.
0,000000231 (двести тридцать одна миллиардная): {\displaystyle 231\cdot 10^{-9}=2{,}31\cdot 100\cdot 10^{-9}=2{,}31\cdot 10^{2}\cdot 10^{-9}=2{,}31\cdot 10^{-9+2}=2{,}31\cdot 10^{-7}} 231\cdot 10^{{-9}}=2{,}31\cdot 100\cdot 10^{{-9}}=2{,}31\cdot 10^{2}\cdot 10^{{-9}}=2{,}31\cdot 10^{{-9+2}}=2{,}31\cdot 10^{{-7}}; N = 0,000000231, M = 2,31, n = 10, p = −7.
Объяснение: както так