1) Один байт = 8 бит, максимальное число 2^8 - 1 = 255, если числа без знака. Для знаковых чисел старший бит отводится под знак числа, следовательно, минимальное число = - 2^7 - 1 = - 127, максимальное число = + 127 2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное = 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита 0000 0110 0100 0111 и записываем в шестнадцатиричном виде 0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16) 1607(16) = 0647(16) или без старшего не значащего нуля = 647(16) 3) для получения дополнительного кода числа, находят обратное число, или инверсию числа, для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1 105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом числа (- а) будет число а. Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2), а) находим обратное 01101001(2) ->(обратное) ->10010110(2) б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105 потому, что отрицательные числа представляются в дополнительном коде. Если для числа - 105 найти дополнительный код, то получим число 105 10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
в среде это g будет, естественно, меньше, так как на шарик действует выталкивающая сила.
найдём это g.
по 2 закону ньютона f = p-fa = pш*v*g0 - рс*v*g0=v*g0*(pш-рс)=m*g = pш*v*g
откуда g = g0*(1-pc/pш)
я использовал обозначения
g0 - стандартное ускорение свободного падения
рш - плотность шарика
рс - плотность среды
v - объём шарика.
то, что я написал, это просто закон архимеда, не более того. а закон ньютона - как скобки.
подставим в исходную формулу, получим
t = 2pi*sqrt(l/g0*(1-pc/pш))
подставим исходные данные
t = 2*pi*sqrt(0.1/g0*(1-1/1.2)) =2*pi*sqrt(6/(10*g0))=2*pi*sqrt(3/(5*g0)) = 2*3.14159*sqrt(3/(5*9.81)) = 1.556c = 1.56c
замечание1. в приближённых вычислениях часто принимают во внимание тот факт, что g = pi^2 c хорошей точностью. это значительно вычисления.
в нашем случае сразу получаем
t = 2*pi*sqrt(l/(g0*(1-1/1. = 2*sqrt(0.1*1.2/0.2) = 2*sqrt(0.6)=1.55 = 1.55c
то есть совпадение до сотых! а вычислять проще.
замечание2 это соотношение действительно только в системе си и его не сложно "доказать". нужно только вспомнить, что такое метр, когда его вводили при наполеоне.
вот вроде и всё.
хотя нет. попробуй исследовать полученную формулу. а что если плотность среды выше плотности шарика?
ну и последнее. при таких плотностях среды(сравнимых с плотностью шарика) пренебрегать сопротивлением среды - рискованно, это сопротивление, как правило, большое и существенно влияет на поведение маятника.
= - 127, максимальное число = + 127
2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное
= 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита
0000 0110 0100 0111 и записываем в шестнадцатиричном виде
0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16)
1607(16) = 0647(16) или без старшего не значащего нуля = 647(16)
3) для получения дополнительного кода числа, находят обратное число, или инверсию числа,
для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1
105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом
числа (- а) будет число а.
Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2),
а) находим обратное 01101001(2) ->(обратное) ->10010110(2)
б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105
потому, что отрицательные числа представляются в дополнительном коде.
Если для числа - 105 найти дополнительный код, то получим число 105
10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
t = 2pi*sqrt(l/g)
в среде это g будет, естественно, меньше, так как на шарик действует выталкивающая сила.
найдём это g.
по 2 закону ньютона f = p-fa = pш*v*g0 - рс*v*g0=v*g0*(pш-рс)=m*g = pш*v*g
откуда g = g0*(1-pc/pш)
я использовал обозначения
g0 - стандартное ускорение свободного падения
рш - плотность шарика
рс - плотность среды
v - объём шарика.
то, что я написал, это просто закон архимеда, не более того. а закон ньютона - как скобки.
подставим в исходную формулу, получим
t = 2pi*sqrt(l/g0*(1-pc/pш))
подставим исходные данные
t = 2*pi*sqrt(0.1/g0*(1-1/1.2)) =2*pi*sqrt(6/(10*g0))=2*pi*sqrt(3/(5*g0)) = 2*3.14159*sqrt(3/(5*9.81)) = 1.556c = 1.56c
замечание1. в приближённых вычислениях часто принимают во внимание тот факт, что g = pi^2 c хорошей точностью. это значительно вычисления.
в нашем случае сразу получаем
t = 2*pi*sqrt(l/(g0*(1-1/1. = 2*sqrt(0.1*1.2/0.2) = 2*sqrt(0.6)=1.55 = 1.55c
то есть совпадение до сотых! а вычислять проще.
замечание2 это соотношение действительно только в системе си и его не сложно "доказать". нужно только вспомнить, что такое метр, когда его вводили при наполеоне.
вот вроде и всё.
хотя нет. попробуй исследовать полученную формулу. а что если плотность среды выше плотности шарика?
(подсказка - маятник перевернётся "вверх ногами").
ну и последнее. при таких плотностях среды(сравнимых с плотностью шарика) пренебрегать сопротивлением среды - рискованно, это сопротивление, как правило, большое и существенно влияет на поведение маятника.