Var ar:array[1..n] of integer; ar2:array[1..n] of integer; i,k:integer;
function prost(a:integer):boolean; var i:integer; b:boolean; begin b:=true; for i:=2 to a div 2 do if a mod i=0 then begin; b:=false; break; end; if a=1 then b:=false; prost:=b; end;
begin; randomize; k:=0; for i:=1 to n do begin; ar[i]:=random(101); write(ar[i]:4); end; writeln; for i:=1 to n do if prost(ar[i]) then begin; inc(k); ar2[k]:=ar[i]; write(ar2[k]:4); end; end.
Несмотря на длинное условие, эта задача совсем не сложная. Очевидно, что здесь речь идет о двух системах счисления, причем основание одной из систем в два раза больше, чем основание другой. По записи выражений (163*11):5+391 и (454*15-26):5+2633 можно предположить, что в первом случае основание меньше, а во втором - больше. Пусть x - основание меньшей системы счисления, тогда второе основание будет 2x. Переведем данные выражения в десятичную систему счисления по известному правилу: 1) ((1*(2x)^2+6*(2x)+3)*(1*2x+1)):5+(3*(2x)^2+9*2x+1)= ((4*x^2+12*x+3)*(2*x+1)):5+(12*x^2+18*x+1) 2) ((4*x^2+5*x+4)*(1*x+5)-(2*x+6)):5+(2*x^3+6*x^2+3*x+3)= ((4*x^2+5*x+4)*(x+5)-(2*x+6)):5+(2*x^3+6*x^2+3*x+3) После раскрытия скобок и приведения подобных, с учетом того, что числа в выражениях должны быть равны, получим: 8*x^3+88*x^2+108*x+8 = 14*x^3+55*x^2+42*x+29 т.е. 6*x^3-33*x^2-66*x+21=0 Очевидно, что нас интересуют только целочисленные положительные решения. Ещё раз посмотрим на выражение (454*15-26):5+2633 Из него видно, что основание системы счисления должно быть не меньше 7. Подставим 7 в уравнение, и! сразу обнаруживаем, что это и есть подходящее нам решение. Таким образом, в "десятке" одного было 7 человек, а в "десятке" другого - 14. Общее количество "шпиёнов" у каждого = 7820
n=5;
Var
ar:array[1..n] of integer;
ar2:array[1..n] of integer;
i,k:integer;
function prost(a:integer):boolean;
var i:integer;
b:boolean;
begin
b:=true;
for i:=2 to a div 2 do
if a mod i=0 then
begin;
b:=false;
break;
end;
if a=1 then b:=false;
prost:=b;
end;
begin;
randomize;
k:=0;
for i:=1 to n do
begin;
ar[i]:=random(101);
write(ar[i]:4);
end;
writeln;
for i:=1 to n do
if prost(ar[i]) then
begin;
inc(k);
ar2[k]:=ar[i];
write(ar2[k]:4);
end;
end.
1) ((1*(2x)^2+6*(2x)+3)*(1*2x+1)):5+(3*(2x)^2+9*2x+1)=
((4*x^2+12*x+3)*(2*x+1)):5+(12*x^2+18*x+1)
2) ((4*x^2+5*x+4)*(1*x+5)-(2*x+6)):5+(2*x^3+6*x^2+3*x+3)=
((4*x^2+5*x+4)*(x+5)-(2*x+6)):5+(2*x^3+6*x^2+3*x+3)
После раскрытия скобок и приведения подобных, с учетом того, что числа в выражениях должны быть равны, получим:
8*x^3+88*x^2+108*x+8 = 14*x^3+55*x^2+42*x+29
т.е. 6*x^3-33*x^2-66*x+21=0
Очевидно, что нас интересуют только целочисленные положительные решения.
Ещё раз посмотрим на выражение (454*15-26):5+2633
Из него видно, что основание системы счисления должно быть не меньше 7.
Подставим 7 в уравнение, и! сразу обнаруживаем, что это и есть подходящее нам решение.
Таким образом, в "десятке" одного было 7 человек, а в "десятке" другого - 14.
Общее количество "шпиёнов" у каждого = 7820