ответ:Алгоритм Карацубы — метод быстрого умножения со сложностью вычисления nlog23. В то время, как наивный алгоритм, умножение в столбик, требует n2 операций. Следует заметить, что при длине чисел короче нескольких десятков знаков (точнее определяется экспериментально), быстрее работает обычное умножение.
Представим, что есть два числа A и B длиной n в какой-то системе счисления BASE:
A = an-1an-2...a0
B = bn-1an-2...a0, где a?, b? — значение в соотв. разряде числа.
Каждое из них можно представить в виде суммы их двух частей, половинок длиной m = n / 2 (если n нечетное, то одна часть короче другой на один разряд:
Здесь нужно 4 операции умножения (части формулы * BASE? * m не являются умножением, фактически указывая место записи результата, разряд). Но с другой стороны:
Посмотрев на выделенные части в обоих формулах. После несложных преобразований количество операций умножения можно свести к 3-м, заменив два умножения на одно и несколько операций сложения и вычитания, время выполнения которых на порядок меньше:
1-б(среди всех свойств информации восприятие никак не припомню) 2-а(пусть и давно это было но система начинает отсчет с диска С, диск А это дискеты, а вот что такое диск В мне когда то давно сказали но я уже не помню, они вышли из потребления еще до моего знакомства с компом) 3-с(с прикладным и так все ясно, а системное это ОС) 4 -б вопрос некорректный, но если взять за качество разрешение и плюнуть на все затраты то струйный 5-а (давно это было очень давно, у третьего нет разрешения да еще и звездочка, а у второго меня угловые скобки смущают) 6-в(вообще давно было, это лучше загуглить, но в первые два верится как то не сильно)
ответ:Алгоритм Карацубы — метод быстрого умножения со сложностью вычисления nlog23. В то время, как наивный алгоритм, умножение в столбик, требует n2 операций. Следует заметить, что при длине чисел короче нескольких десятков знаков (точнее определяется экспериментально), быстрее работает обычное умножение.
Представим, что есть два числа A и B длиной n в какой-то системе счисления BASE:
A = an-1an-2...a0
B = bn-1an-2...a0, где a?, b? — значение в соотв. разряде числа.
Каждое из них можно представить в виде суммы их двух частей, половинок длиной m = n / 2 (если n нечетное, то одна часть короче другой на один разряд:
A0 = am-1am-2...a0
A1 = an-1an-2...am
A = A0 + A1 * BASEm
B0 = bm-1bm-2...b0
B1 = bn-1bn-2...bm
B = B0 + B1 * BASEm
Тогда: A * B = ( A0 + A1 * BASEm ) * ( B0 + B1 * BASEm ) = A0 * B0 + A0 * B1 * BASEm + A1 * B0 * BASEm + A1 * B1 * BASE2 * m = A0 * B0 + ( A0 * B1 + A1 * B0 ) * BASEm + A1 * B1 * BASE2 * m
Здесь нужно 4 операции умножения (части формулы * BASE? * m не являются умножением, фактически указывая место записи результата, разряд). Но с другой стороны:
( A0 + A1 ) * ( B0 + B1 ) = A0 * B0 + A0 * B1 + A1 * B0 + A1 * B1
Посмотрев на выделенные части в обоих формулах. После несложных преобразований количество операций умножения можно свести к 3-м, заменив два умножения на одно и несколько операций сложения и вычитания, время выполнения которых на порядок меньше:
A0 * B1 + A1 * B0 = ( A0 + A1 ) * ( B0 + B1 ) — A0 * B0 — A1 * B1
Окончательный вид выражения:
A * B = A0 * B0 + (( A0 + A1 ) * ( B0 + B1 ) — A0 * B0 — A1 * B1 ) * BASEm + A1 * B1 * BASE2 * m
Объяснение:
2-а(пусть и давно это было но система начинает отсчет с диска С, диск А это дискеты, а вот что такое диск В мне когда то давно сказали но я уже не помню, они вышли из потребления еще до моего знакомства с компом)
3-с(с прикладным и так все ясно, а системное это ОС)
4 -б вопрос некорректный, но если взять за качество разрешение и плюнуть на все затраты то струйный
5-а (давно это было очень давно, у третьего нет разрешения да еще и звездочка, а у второго меня угловые скобки смущают)
6-в(вообще давно было, это лучше загуглить, но в первые два верится как то не сильно)