Решать подобные задачи использование диаграмм. Очертим три окружности, означающие драмкружок, спортсменов и хор. Области пересечений окружностей означают одновременную принадлежность к двум или трем категориям занятий. Начнем заполнение. 1. Всем трем областям соответствует условие "3 спортсмена посещают и драмкружок, и хор)". Ставим число 3 (помечено красным). 2. В драмкружке 10 ребят из хора. Следовательно, в области пересечения "Драмкружок+хор" должно находиться число 10. Но часть этой области пересекается с областью, где находятся все три категории занятий, поэтому из 10 вычитаем стоящую в этой области красную тройку и получаем число 7 (помечено синим). Т.е. посещают драмкружок и хор, но не занимаются спортом 7 человек. 3. В хоре 6 спортсменов. Рассуждая аналогично (2) получаем синее число 3. 4. В драмкружке 8 спортсменов. Получаем синее число 5. 5. 27 ребят занимаются в драмкружке. Вычитаем из этого количества число ребят, принадлежащее общим областям 7+5+3=15 и получаем 27-15=12 человек, которые занимаются только в драмкружке. 6. Аналогично получаем 11 спортсменов и 19 участников хора. 7. Всего 70 учеников. Вычитая количество учеников, которые чем-либо заняты, определяем, что 10 человек не заняты ничем. 8. Только спортом, как видно из рисунка, занимаются 11 человек
Пусть Д – драмкружок, Х – хор, С – спорт.Тогда в круге Д – 27 ребят, в круге Х – 32 человека, в круге С – 22 ученика.Те 10 ребят из драмкружка, которые поют в хоре, окажутся в общей части кругов Д и X. Трое из них ещё и спортсмены, они окажутся в общей части всех трёх кругов. Остальные семеро спортом не увлекаются. Аналогично, 8 – 3 = 5 спортсменов, не поющих в хоре и 6 – 3 = 3, не посещающих драмкружок.Легко видеть, что 5 + 3 + 3 = 11 спортсменов посещают хор или драмкружок,22 – (5 + 3 + 3) = 11 занимаются только спортом; 70 – (11 + 12 + 19 + 7 + 3 + 3 + 5) = 10 – не поют в хоре, не занимаются в драмкружке, не увлекаются спортом.ответ: 10 человек и 11 человек. это математика
Очертим три окружности, означающие драмкружок, спортсменов и хор. Области пересечений окружностей означают одновременную принадлежность к двум или трем категориям занятий. Начнем заполнение.
1. Всем трем областям соответствует условие "3 спортсмена посещают и драмкружок, и хор)". Ставим число 3 (помечено красным).
2. В драмкружке 10 ребят из хора. Следовательно, в области пересечения "Драмкружок+хор" должно находиться число 10. Но часть этой области пересекается с областью, где находятся все три категории занятий, поэтому из 10 вычитаем стоящую в этой области красную тройку и получаем число 7 (помечено синим). Т.е. посещают драмкружок и хор, но не занимаются спортом 7 человек.
3. В хоре 6 спортсменов. Рассуждая аналогично (2) получаем синее число 3.
4. В драмкружке 8 спортсменов. Получаем синее число 5.
5. 27 ребят занимаются в драмкружке. Вычитаем из этого количества число ребят, принадлежащее общим областям 7+5+3=15 и получаем 27-15=12 человек, которые занимаются только в драмкружке.
6. Аналогично получаем 11 спортсменов и 19 участников хора.
7. Всего 70 учеников. Вычитая количество учеников, которые чем-либо заняты, определяем, что 10 человек не заняты ничем.
8. Только спортом, как видно из рисунка, занимаются 11 человек
Д – драмкружок,
Х – хор,
С – спорт.Тогда
в круге Д – 27 ребят,
в круге Х – 32 человека,
в круге С – 22 ученика.Те 10 ребят из драмкружка, которые поют в хоре, окажутся в общей части кругов Д и X. Трое из них ещё и спортсмены, они окажутся в общей части всех трёх кругов. Остальные семеро спортом не увлекаются. Аналогично, 8 – 3 = 5 спортсменов, не поющих в хоре и 6 – 3 = 3, не посещающих драмкружок.Легко видеть, что 5 + 3 + 3 = 11 спортсменов посещают хор или драмкружок,22 – (5 + 3 + 3) = 11 занимаются только спортом; 70 – (11 + 12 + 19 + 7 + 3 + 3 + 5) = 10 – не поют в хоре, не занимаются в драмкружке, не увлекаются спортом.ответ: 10 человек и 11 человек.
это математика