Высчитаем необходимый размер памяти для хранения 1 символа. В используемом алфавите имеется 256 символов. 256 символов (состояний) можно закодировать таким числом бит, которых достаточно для отображения этого числа состояний. В данном случае это 8 бит (т.к. 1111 1111 = 255, да плюс нулевое состояние, итого 256 возможных состояний). Т.е. для хранения 1 символа требуется 8 бит = 1 байт. Посчитаем количество символов в документе. 30*70*5 = 2100 * 5 = 10500 символов. Для хранения которых потребуется 10500 * 1 = 10500 байт. (Он же, если нужно, 10500/1024 = 10,25390625 Кбайт. )
В используемом алфавите имеется 256 символов. 256 символов (состояний) можно закодировать таким числом бит, которых достаточно для отображения этого числа состояний. В данном случае это 8 бит (т.к. 1111 1111 = 255, да плюс нулевое состояние, итого 256 возможных состояний).
Т.е. для хранения 1 символа требуется 8 бит = 1 байт.
Посчитаем количество символов в документе.
30*70*5 = 2100 * 5 = 10500 символов.
Для хранения которых потребуется
10500 * 1 = 10500 байт.
(Он же, если нужно, 10500/1024 = 10,25390625 Кбайт. )
7)На координатной плоскости отмечены числа p,q и r.
Какая из разностей q-p, q-r, r-p отрицательная.
ответ: q-r такая из разниц будет отрицательная
8)
9)
х=±7
ответ :-7
10) Костя не выучил 4 билета всего 25 билетов
25-4=21
Вероятность что Кости попадется билет который он знает 21/25=0,84
13) 8х-3(х+9)≥-9
8х-3х-27≥-9
8х-3х≥-9+27
5х≥18
х≥18/15
х≥3,6
ответ: [3,6;∞) №1
14) 1 минута образуется осадок 0,2 грамма
а1=0,2 гр
а7= неизвестная переменная
d = 0,5 - на столько каждую минуту увеличивается масса осадка.
Формула n-ого члена арифметической прогрессии выглядит так:
аn = a1 + d(n - 1).
Подставляем данные величины:
а7 = 0,2 + 0,2(7 - 1) = 0,2 + 1,2= 1,4грамма
ответ: 1,4 грамма
Объяснение: