A2 № 3487. Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённость которых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.)
Определите длину кратчайшего пути между пунктами A и B (при условии, что передвигаться можно только по построенным дорогам). 1) 6 2) 7 3) 8 4) 9
A2 № 1030. Путешественник пришел в 08:00 на автостанцию поселка КАЛИНИНО и увидел следующее расписание автобусов:
Определите самое раннее время, когда путешественник сможет оказаться в пункте РАКИТИНО согласно этому расписанию.
Объявляем функцию gcd, принимающую два целочисленных параметра и возвращающую их наибольший общий делитель. Здесь это вычисляется при алгоритма Евклида.
Затем для удобства определяем ещё одну функцию gcd3, которая принимает уже три аргумента и, используя указанную в условии формулу и описанную выше функцию gcd, вычисляет НОД от трёх чисел.
В основной части программы просто три числа считываются с клавиатуры и выводится ответ.
Код (PascalABC.NET v3.6.2316):
function gcd(a, b: integer): integer;
begin
while a * b <> 0 do
(a, b) := (b, a mod b);
Result := a + b
end;
function gcd3(a, b, c: integer) := gcd(gcd(a, b), c);
A2 № 3487. Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённость которых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.)
Определите длину кратчайшего пути между пунктами A и B (при условии, что передвигаться можно только по построенным дорогам).1) 6
2) 7
3) 8
4) 9
A2 № 1030. Путешественник пришел в 08:00 на автостанцию поселка КАЛИНИНО и увидел следующее расписание автобусов:
Определите самое раннее время, когда путешественник сможет оказаться в пункте РАКИТИНО согласно этому расписанию.1) 12:25
2) 12:30
3) 12:35
4) 12:40
Объявляем функцию gcd, принимающую два целочисленных параметра и возвращающую их наибольший общий делитель. Здесь это вычисляется при алгоритма Евклида.
Затем для удобства определяем ещё одну функцию gcd3, которая принимает уже три аргумента и, используя указанную в условии формулу и описанную выше функцию gcd, вычисляет НОД от трёх чисел.
В основной части программы просто три числа считываются с клавиатуры и выводится ответ.
Код (PascalABC.NET v3.6.2316):
function gcd(a, b: integer): integer;
begin
while a * b <> 0 do
(a, b) := (b, a mod b);
Result := a + b
end;
function gcd3(a, b, c: integer) := gcd(gcd(a, b), c);
begin
var (a, b, c) := ReadInteger3;
print(gcd3(a, b, c))
end.
Пример ввода:
10 40 20
Пример вывода:
10