Определите, какие из следующих предложений являются высказываниями, а какие нет:
1) Математика – царица наук.
2) Ты знаешь теорию вероятностей?
3) Выучи урок, заданный по алгебре.
4) Есть школьники, которые знают
математику на «5».
5) Все школьники любят математику.
6) Спортом заниматься полезно.
7) Все спортсмены – очень здоровые люди.
8) Некоторые школьники предпочитают
атлетику.
9) Ты играешь в хоккей?
10) Обязательно займись каким-либо видом
спорта
"Я самый главный!"- заявил монитор, на мне возникает информация и изображения.
"Нет, я самая главная,- сказала клавиатура, без меня никак, не сможешь ничего оттреадактировать,вбить информацию в память, общаться - да вообще ничего!"
Но память возразила : " Ээх вы, я тут главнее всех, как вы без меня! Ничего не сохранишь, не запомнишь, да в общем без меня очень сложно что-то представить!"
"Да вы что? - начал возмущаться процессор, - Главных не должно быть, мы все представляем собой одно целое!" Так они и воссоединились и представляют собой одну частичку главного .
¬А отрицание А, то есть х не принадлежит А
перепишем и упростим исходную формулу
P→((Q∧¬A)→P)
известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности)
тогда:
P→(¬(Q∧¬A)∨P)
раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности)
P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P
¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать
остается ¬Q∨A
Значит х либо принадлежит А либо не принадлежит Q
для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q
ответ А=[40,77]