Количество информации определяется по формулам Ральфа Хартли и Клода Шеннона.
1)
а) Формула Хартли:
Получения информации рассматривается как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.
I = log2N
б) Формула Шеннона:
Учитывает возможную неодинаковую вероятность сообщений в наборе
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Введи A");
double A = double.Parse(Console.ReadLine());
Console.WriteLine("Введи B");
double B = double.Parse(Console.ReadLine());
Console.WriteLine("1 - сложение, 2 - вычитание");
int n = int.Parse(Console.ReadLine());
switch (n)
{
case 1:
{
double Y = A + B;
Console.WriteLine(Y);
break;
}
case 2:
{
double Z = A - B;
Console.WriteLine(Z);
break;
}
default:
{
Console.WriteLine("Выбрана несуществующая операция");
break;
}
}
Console.ReadKey();
}
}
}
Количество информации определяется по формулам Ральфа Хартли и Клода Шеннона.
1)
а) Формула Хартли:
Получения информации рассматривается как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.
I = log2N
б) Формула Шеннона:
Учитывает возможную неодинаковую вероятность сообщений в наборе
I = — ( p^1log^2 p1 + p2 log^2 p2 + . . . + p^N log^2 p^N),
где p^i — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.
Считаем по фомуле Хартли
подсчитаем N,
N = 31 * 12 = 372 (дней 31) или 30 * 12 =360 (дней 30)
Сначала вычислим 2 ^ i:
2 ^ i = (31* 12) 372.
2^i = (30* 12) 360
вычислим
i = log2(372) = 8.5391 бит.
i = log2(360) = 8.4918 бит. округляем = 8.5
2)
Тоже самое, только нужно прибавить часы в сутках и получить N = (31*12*24) = 8928 (дней 31)
или
(30*12*24) = 8640 дней 30
далее
i = log2(8928) = 13.1241 бит. (31 день)
i = log2(8640) = 13.0768 бит. (30 дней)