В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Foxer30
Foxer30
09.12.2020 00:13 •  Информатика

Определите количество натуральных значений А, не превосходящих 100, для которых логическое выражение not X mod A > 0 → X mod 7 = 0 Λ X mod 5 = 0 истинно при любом целочисленном X.

Показать ответ
Ответ:
Машkа
Машkа
15.10.2020 15:40

2

Объяснение:

Избавимся от not: X mod A = 0 → X mod 7 = 0 Λ X mod 5 = 0. Заметим, что выражение X mod 7 = 0 Λ X mod 5 = 0 равносильно X mod 35 = 0. Действительно, утверждение "X делится на 5 и 7" истинно только тогда, когда X делится на 5 * 7 = 35. Значит, исходное выражение можно представить как X mod A = 0 → X mod 35 = 0

Следование ложно, если первая часть истинна, а вторая ложна, то есть когда X делится на A, но не делится на 35. Нужно, чтобы таких случаев не было. Если X не делится на 35, то X не должно делиться на A. Так как A % A = 0, для любого A найдётся такой x (x = A), что левая часть всегда истинна. Тогда при данном x правая часть также должна быть истинна: A mod 35 = 0, A = 35; 70 — 2 значения.

0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота