Воспользуемся расширенной записью шестнадцатиричного числа в десятичной системе счисления. Тогда 3(a*16²+b*16+c)=b*16²+c*16+a; 767a=208b+13c; 59a=16b+c → a=(16b+c)/59 (1) Здесь a,b,c - шестнадцатиричные цифры, имеющие десятичный эквивалент от 0 до 15. Наложим ограничения. a и b не могут быть нулевыми, поскольку с них начинаются числа, а с может быть и нулем. При b=15 и c=15 значение a по формуле (1) не может быть больше (16*15+15)/59, что в целых числах дает 4. Следовательно, нам надо подобрать такие b и c, чтобы a принимало значения от 1 до 4. Будем подставлять эти значения в (1). 1) При а=1 получаем (16b+c)/59=1 → 16b+c=59. b=59/16=3 (нацело), c=59-16*3=11. Искомое число 13B₁₆ 2) При а=2 получаем (16b+c)/59=2 → 16b+c=118. b=118/16=7 (нацело), с=118-16*7=6. Искомое число 276₁₆
Аналогичным образом находим два остальных числа: 3B1₁₆ и 4EC₁₆
Замечание. Фактически, мы получаем числа 59х1, 59х2, 59х3, 59х4 и переводим их в шестнадцатиричную систему счисления, поскольку в формуле (1) в скобках записано представление расширенное представление шестнадцатиричного числа.
3(a*16²+b*16+c)=b*16²+c*16+a;
767a=208b+13c; 59a=16b+c → a=(16b+c)/59 (1)
Здесь a,b,c - шестнадцатиричные цифры, имеющие десятичный эквивалент от 0 до 15.
Наложим ограничения. a и b не могут быть нулевыми, поскольку с них начинаются числа, а с может быть и нулем. При b=15 и c=15 значение a по формуле (1) не может быть больше (16*15+15)/59, что в целых числах дает 4.
Следовательно, нам надо подобрать такие b и c, чтобы a принимало значения от 1 до 4. Будем подставлять эти значения в (1).
1) При а=1 получаем (16b+c)/59=1 → 16b+c=59.
b=59/16=3 (нацело), c=59-16*3=11. Искомое число 13B₁₆
2) При а=2 получаем (16b+c)/59=2 → 16b+c=118.
b=118/16=7 (нацело), с=118-16*7=6. Искомое число 276₁₆
Аналогичным образом находим два остальных числа: 3B1₁₆ и 4EC₁₆
Замечание. Фактически, мы получаем числа 59х1, 59х2, 59х3, 59х4 и переводим их в шестнадцатиричную систему счисления, поскольку в формуле (1) в скобках записано представление расширенное представление шестнадцатиричного числа.
2 Мбайта =2*2^(23) бита ; 16=2^4;
2*2^(23) : 2^4 = 2^(20) =1048576 символов в сообщении
2)
3*40*60=7200 количество символов
14400*2^3 : 7200 = 16 бит для одного символа
3)
10 кбайт =10*2^13 бит =5*2^14 бит
8*32*40 =2^3 * 2^5 *2^3 *5 =5*2^11
(5*2^14) : (5*2^11) = 2^3 =8 бит для одного символа
2^8 =256 допустимых символов в алфавите
4)
2*32*40 =2* 2^5* 2^3* 5 =5*2^9 символов на листе, на двух страницах
8 Кбайт =8*2^13 бит =2^16 бит
2^16 :2^3 =2^13 символов в тексте
2^13 : (5*2^9)=2^4 : 5 =3,2 = 4 листа