Исключа́ющее «или» (сложе́ние по мо́дулю 2, XOR, строгая дизъюнкция, поразрядное дополнение, инвертирование по маске, жегалкинское сложение, логическое вычитание, логи́ческая неравнозна́чность) — булева функция, а также логическая и битовая операция, в случае двух переменных результат выполнения операции истинен тогда и только тогда, когда один из аргументов истинен, а другой — ложен. Для функции трёх (тернарное сложение по модулю 2) и более переменных — результат выполнения операции будет истинным только тогда, когда количество аргументов, равных 1, составляющих текущий набор, — нечётное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.
m 8 5 n 3 ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно. 11 c|c M=6 n = 4 ответ: основание системы 11, m=6, n=4
2. m m 65 n +2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6. Проверим по действиям в 7 с/с, при сложении в столбик, при m=3 и n=1 и удостоверимся, что всё верно. ответ: осн. с\с = 7, m=3, n=1
Исключа́ющее «или» (сложе́ние по мо́дулю 2, XOR, строгая дизъюнкция, поразрядное дополнение, инвертирование по маске, жегалкинское сложение, логическое вычитание, логи́ческая неравнозна́чность) — булева функция, а также логическая и битовая операция, в случае двух переменных результат выполнения операции истинен тогда и только тогда, когда один из аргументов истинен, а другой — ложен. Для функции трёх (тернарное сложение по модулю 2) и более переменных — результат выполнения операции будет истинным только тогда, когда количество аргументов, равных 1, составляющих текущий набор, — нечётное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.
1. + n 3 8 9 8
2 n 7 5 m
m 8 5 n 3
ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно.
11 c|c M=6 n = 4
ответ: основание системы 11, m=6, n=4
2. m m 65 n
+2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6.
Проверим по действиям в 7 с/с, при сложении в столбик,
при m=3 и n=1
и удостоверимся, что всё верно.
ответ: осн. с\с = 7, m=3, n=1
3. пусть основание с\с будет X? тогда:
(4*X^2+X+5)*4 =2*X^3+2*X^2+6*X+6
раскрываем скобки, преобразуем и получаем уравнение:
(2*X - 14)*(X^2+1) = 0 ---> X=7
ответ:7