Під час змагань на іподромі Жокей на коні долає ді лянку дистанції від 1-го до 26-го стовпчика за 1 хв. З якою швидкістю біжить кінь, якщо відстань між двома сусідніми стовпчиками становить 30 м? Розвяжить у паскали будьласка.
Вообще то, это задача чисто математическая. Пусть есть трехзначное число abc. По условию:
abc + abc
bca Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений: 2c = a +16 2b +1 = c + 16 2a + 1 = b равносильная ей система 2с = a + 16 c = 2b - 15 b = 2a + 1 подставляем третье во второе, получаем первые два уравнения 2с = a + 16 c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13 13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16) -> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
m 8 5 n 3 ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно. 11 c|c M=6 n = 4 ответ: основание системы 11, m=6, n=4
2. m m 65 n +2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6. Проверим по действиям в 7 с/с, при сложении в столбик, при m=3 и n=1 и удостоверимся, что всё верно. ответ: осн. с\с = 7, m=3, n=1
По условию:
abc
+ abc
bca
Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений:
2c = a +16
2b +1 = c + 16
2a + 1 = b
равносильная ей система
2с = a + 16
c = 2b - 15
b = 2a + 1
подставляем третье во второе, получаем первые два уравнения
2с = a + 16
c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13
13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16)
-> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
1. + n 3 8 9 8
2 n 7 5 m
m 8 5 n 3
ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно.
11 c|c M=6 n = 4
ответ: основание системы 11, m=6, n=4
2. m m 65 n
+2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6.
Проверим по действиям в 7 с/с, при сложении в столбик,
при m=3 и n=1
и удостоверимся, что всё верно.
ответ: осн. с\с = 7, m=3, n=1
3. пусть основание с\с будет X? тогда:
(4*X^2+X+5)*4 =2*X^3+2*X^2+6*X+6
раскрываем скобки, преобразуем и получаем уравнение:
(2*X - 14)*(X^2+1) = 0 ---> X=7
ответ:7