построить машину Тьюринга Пусть P имеет вид Q+R, где Q и R – непустые слова из символов 0, 1 и 2. Трактуя Q и R как записи чисел в троичной системе счисления (возможно, с незначащими нулями), выдать в качестве ответа запись суммы этих чисел в той же троичной системе.
** (* - любой из символов В или С)
*А*
ААА*АА*
АА*ААА*
А**
** (пока 6 вариантов)
Далее - аналогично:
**А
ААА*А*А
АА*АА*А
А*ААА*А
**А (ещё 5 вариантов)
ААА**АА
АА*А*АА
А*АА*АА
*ААА*АА (ещё 4 варианта)
АА**ААА
А*А*ААА
*АА*ААА (ещё 3 варианта)
А**
*А* (ещё 2)
** (ещё 1)
Итого: 6+5+4+3+2+1=21
Так как на месте * могут быть любые из 2 символов В или С, то это даст ещё по 4 варианта для каждого случая.
Можно здесь, конечно, комбинаторику вспомнить.
Итого: 21*4 = 84
1. 0..65534 -> 32767
2. 0..32766 -> 16383
3. 0..16382 -> 8191
4. 0..8190 -> 4095
5. 0..4094 -> 2047
6. 2048..4094 -> 3071
7. 2048..3070 -> 2559
8. 2560..3070 -> 2815
9. 2816..3070 -> 2943
10. 2944..3070 -> 3007
11. 2944..3006 -> 2975
12. 2976..3006 -> 2991
13. 2992..3006 -> 2999
14. 3000..3006 -> 3003
15. 3000..3002 -> 3001
Если лень перебирать вручную, можно воспользоваться программой
var k,l,r,x,f:integer;
begin
f := 3001;
l := 0;
r := 65534;
x := (l + r) div 2;
k := 1;
while (x <> f) and (l < r) do
begin
writeln(k,' ',l,' ',r,' ',x);
k := k + 1;
if f < x then r := x - 1
else l := x + 1;
x := (l + r) div 2
end;
writeln(k,' ',l,' ',r,' ',x);
end.