Пусть V= {1,2,3,4,5,6,7,8,9,10} - множество вершин графа. Для каждого из перечисленных ниже случаев изобразите соответствующий граф:
а) вершины x и y соединены ребром тогда и только тогда, когда (x - y) / 3 - целое число;
б) вершины x и y соединены ребром тогда и только тогда, когда x + y = 9
31-й бит - знаковый разряд (0 для положительных, 1 для отрицательных)
биты с 30 по 23 - порядок
остальные биты (с 22 до 0) - дробная часть нормализованной мантиссы
1 10000011 00001110000000000000000
Знак: 1
Число отрицательное
Порядок: 10000011
Показатель степени 10000011_2 - 01111111_2 = 00000100_2 = 4_10
Мантисса: 00001110 00000000 0000000
1,0000111_2 = 2^0 + 2^-5 + 2^-6 + 2^-7
Число равно -2^4 * (1 + 2^-5 + 2^-6 + 2^-7) = -(2^4 + 2^-1 + 2^-2 + 2^-3) = -(16 + 0.5 + 0.25 + 0.125) = -16.875