Function IsPrime(n:LongInt):Boolean; var p:LongInt; found:Boolean; begin found:= (n Mod 2 = 0); p:=3; while (not found) and (sqr(p)<=n) do begin found:=(n Mod p = 0); p:=p+2 end; IsPrime:=(not found) or (p = 2) end;
var i:integer; begin i:=101; WriteLn('Таблица простых трехзначных чисел'); repeat if IsPrime(i) then Write(i,' '); i:=i+2 until i>999; Writeln end.
Имеется всего 6 вариантов как назначить бакам целевой мусор. Например, в 1-й бак собираем стекло, во 2-й бак бумагу, в 3-й бак жесть. Другой вариант: в 1-й стекло, 2-й жесть, 3-й бумага. Всего имеется шесть таких вариантов.
Можем тупо перебрать эти варианты сборки из исходных данных, и увидеть который даст меньшую сумму перекладок. Можешь сделать это самостоятельно, а мне лень.
Идём дальше, и заметим, что сумма перекладок составляет общую сумму всех предметов во всех баках, за минусом тех, которые изначально уже находятся в своих баках. Эта логика верна для любого из шести начальных вариантов.
А что такое предметы, уже находящиеся в своих баках? Это значит, что для данного из шести вариантов наборов баков имеется только одно число в своей строке таблицы, которое указывает на уже лежащий предмет. Например, если баки назначаем так: стекло, бумага, жесть, то из общей суммы всех предметов задачи нужно вычесть числа 52, 83, 75 - то есть лежащие на главной диагонали таблицы.
Для нахождения решения задачи нам нужно подобрать такую перестановку столбцов заданной таблицы, чтобы сумма чисел, находящихся на главной диагонали была максимальной. При таком варианте общая сумма перекладок предметов будет минимальна.
Руководствуясь этим принципом, нужно найти такую комбинацию выбора трёх чисел из заданной таблицы, чтобы они все три одновременно принадлежали как разным строкам, так и разным столбцам; и при этом сумма выбранных чисел была бы максимальной из всех (а их 6) вариантов выбора.
Мне неохота перебирать все эти комбинации, сделай сам. Но навскидку кажется, что если из первого столбца выберу максимальное число (98), из второго столбца уже выбранную строку (вторую) трогать нельзя, поэтому среди верхнего (58) и нижнего (83) выберу наибольшее, и это 83. Таким образом, вторая и третья строки заняты. Из третьего столбца остаётся, что можно взять только число из первой строки, и это 64.
Сумма 98+83+64 = 245 - это число предметов, которые не нужно перекладывать, они сразу лежат в своих баках.
Общее число предметов в задаче - сумма всех 9 чисел таблцы, у меня получилась 693.
ответом будет число перекладок, равное общему числу предметов, минус которые не надо перекладывать. То есть 693 - 245 = 448.
Думаю что это и есть ответ. Но лучше проверь остальные 5 вариантов назначения баков своим видам мусора, и получишь ещё пять чисел. ответом будет наименьшее из них. Чисто нвскидку мне кажется, что это и будет 448.
var
p:LongInt;
found:Boolean;
begin
found:= (n Mod 2 = 0);
p:=3;
while (not found) and (sqr(p)<=n) do
begin
found:=(n Mod p = 0);
p:=p+2
end;
IsPrime:=(not found) or (p = 2)
end;
var
i:integer;
begin
i:=101;
WriteLn('Таблица простых трехзначных чисел');
repeat
if IsPrime(i) then Write(i,' ');
i:=i+2
until i>999;
Writeln
end.
Результат выполнения программы:
Таблица простых трехзначных чисел
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997
Можем тупо перебрать эти варианты сборки из исходных данных, и увидеть который даст меньшую сумму перекладок. Можешь сделать это самостоятельно, а мне лень.
Идём дальше, и заметим, что сумма перекладок составляет общую сумму всех предметов во всех баках, за минусом тех, которые изначально уже находятся в своих баках. Эта логика верна для любого из шести начальных вариантов.
А что такое предметы, уже находящиеся в своих баках? Это значит, что для данного из шести вариантов наборов баков имеется только одно число в своей строке таблицы, которое указывает на уже лежащий предмет. Например, если баки назначаем так: стекло, бумага, жесть, то из общей суммы всех предметов задачи нужно вычесть числа 52, 83, 75 - то есть лежащие на главной диагонали таблицы.
Для нахождения решения задачи нам нужно подобрать такую перестановку столбцов заданной таблицы, чтобы сумма чисел, находящихся на главной диагонали была максимальной. При таком варианте общая сумма перекладок предметов будет минимальна.
Руководствуясь этим принципом, нужно найти такую комбинацию выбора трёх чисел из заданной таблицы, чтобы они все три одновременно принадлежали как разным строкам, так и разным столбцам; и при этом сумма выбранных чисел была бы максимальной из всех (а их 6) вариантов выбора.
Мне неохота перебирать все эти комбинации, сделай сам. Но навскидку кажется, что если из первого столбца выберу максимальное число (98), из второго столбца уже выбранную строку (вторую) трогать нельзя, поэтому среди верхнего (58) и нижнего (83) выберу наибольшее, и это 83. Таким образом, вторая и третья строки заняты. Из третьего столбца остаётся, что можно взять только число из первой строки, и это 64.
Сумма 98+83+64 = 245 - это число предметов, которые не нужно перекладывать, они сразу лежат в своих баках.
Общее число предметов в задаче - сумма всех 9 чисел таблцы, у меня получилась 693.
ответом будет число перекладок, равное общему числу предметов, минус которые не надо перекладывать. То есть 693 - 245 = 448.
Думаю что это и есть ответ. Но лучше проверь остальные 5 вариантов назначения баков своим видам мусора, и получишь ещё пять чисел. ответом будет наименьшее из них. Чисто нвскидку мне кажется, что это и будет 448.