Тогда выражение будет иметь вид (a + b) → b и нужно найти условия, когда оно ложно. Вместо этого, мы будем искать, когда отрицание этого условия истинно, т.е. истинность ¬( (a + b) → b)
Для начала избавимся от импликации
¬( ¬(a + b) + b)
А теперь примерим к внешнему отрицанию закон де-Моргана
1, 2, 3, 4
Объяснение:
Введем обозначения:
a = X > 0, b = X > 4
Тогда выражение будет иметь вид (a + b) → b и нужно найти условия, когда оно ложно. Вместо этого, мы будем искать, когда отрицание этого условия истинно, т.е. истинность ¬( (a + b) → b)
Для начала избавимся от импликации
¬( ¬(a + b) + b)
А теперь примерим к внешнему отрицанию закон де-Моргана
(a + b) · ¬b
Раскрываем скобки
a · ¬b + b · ¬b
a · ¬b + 0
a · ¬b
Делаем обратную замену
( X > 0) · ¬(X > 4)
( X > 0) · (X ≤ 4)
Переведем это на более понятный язык:
X > 0 И X ≤ 4, или
0 < X ≤ 4
Из целых чисел сюда подойдут 1, 2, 3, 4.
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <stdio.h>
int main()
{
float a, b, c;
setlocale(LC_ALL, "Russian");
printf("Введите три числа: ");
scanf("%f %f %f", &a, &b, &c);
if (a > b && a > c)
printf("Наибольшее число = %f", a);
else if (b > a && b > c)
printf("Наибольшее число = %f", b);
else if (c > a && c > b)
printf("Наибольшее число = %f", c);
else
printf("Наибольшее значение имеют несколько чисел");
}