В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Uqqt
Uqqt
11.12.2020 16:07 •  Информатика

решить 2 задачи по информатике ♡*( ͡˘̴ ͜ ʖ̫ ͡˘̴ )*♡

Показать ответ
Ответ:
AnnaKeya
AnnaKeya
19.07.2022 17:26
Математические  дроби - то есть это : ⅟ ½ ⅓ ¼ ⅕ ⅙ ⅐ ⅛ ⅑ ⅒ ⅔ ¾ ⅖ ⅗ ⅘ ⅚ ⅜ ⅝ ⅞.
Знаки тире как: длинное тире , цифровое тире , горизонтальная линия .
Математические символы такие как: ∫ ∬ ∭ ∮ ∯ ∰ ∱ ∲ ∳
∃ ∄ ∅ ∆ ∇ ∈ ∉ ∊ ∋ ∌ ∍ ∎ ∏ ∐ ∑ − ∓ ∔ ∕ ∖ ∗ ∘ ∙ √ ∛ ∜ ∝ ∟ ∠ ∡ ∢ ∣ ∤ ∥ ∦ ∧ ∨ ∩ ∪ ∴ ∵ ∶ ∷ ∸ ∹ ∺ ∻ ∼ ∽ ∾ ∿ ≀ ≁ ≂ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≠ ≡ ≢ ≣ ≤ ≥ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊂ ⊃ ⊄ ⊅ ⊆ ⊇ ⊈ ⊉ ⊊ ⊋ ⊌ ⊍ ⊎ ⊏ ⊐ ⊑ ⊒ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊜ ⊝ ⊞ ⊟ ⊠ ⊡ ⊢ ⊣ ⊤ ⊥ ⊦ ⊧ ⊨ ⊩ ⊪ ⊫ ⊬ ⊭ ⊮ ⊯ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⊸ ⊹ ⊺ ⊻ ⊼ ⊽ ⊾ ⊿ ⋀ ⋁ ⋂ ⋃ ⋄ ⋅ ⋆ ⋇ ⋈ ⋉ ⋊ ⋋ ⋌ ⋍ ⋎ ⋏ ⋐ ⋑ ⋒ ⋓ ⋔ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋮ ⋯ ⋰ ⋱ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ✕ ✖ ✚.
Символы как процент -‰
Римские цифры : Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ⅺ ⅻ.
Цифры в кружках - ⓵ ⓶ ⓷ ⓸ ⓹ ⓺ ⓻ ⓼ ⓽ ⓾ ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓
⓪ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳
❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿ ⓫ ⓬ ⓭ ⓮ ⓯ ⓰ ⓱ ⓲ ⓳ ⓴
Латинские буквы в кружочках:
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ
ⓐⓑⓒⓓⓔⓕⓖⓗⓘⓙⓚⓛⓜⓝⓞⓟⓠⓡⓢⓣⓤⓥⓦⓧⓨⓩ
Знаки валютных купюр : $ € ¥ £ ƒ ₣ ¢ ¤ ฿ ₠ ₡ ₢ ₤
Смайлики:㋛ ソ ッ ヅ ツ ゾ シ ジ ッ ツ シ ン 〴 ت ☺ ☻ ☹
Рука , указательнйы палец и многое другое ( ✉ ✍ ✎ ✏ ✐ ✑ ✒,☚☛☜☝☞☟✌,✆ ☎ ☏,
0,0(0 оценок)
Ответ:
1660044
1660044
28.11.2021 05:34

Деление c остатком — арифметическая операция, играющая большую роль в арифметике, теории чисел, алгебре и криптографии. Чаще всего эта операция определяется для целых или натуральных чисел следующим образом[1]. Пусть {\displaystyle a}a и {\displaystyle b}b — целые числа, причём {\displaystyle b\neq 0.}b\neq 0. Деление с остатком {\displaystyle a}a («делимого») на {\displaystyle b}b («делитель») означает нахождение таких целых чисел {\displaystyle q}q и {\displaystyle r}r, что выполняется равенство:

{\displaystyle a=b\cdot q+r}a=b\cdot q+r

Таким образом, результатами деления с остатком являются два целых числа: {\displaystyle q}q называется неполным частным от деления, а {\displaystyle r}r — остатком от деления. На остаток налагается дополнительное условие: {\displaystyle 0\leqslant r<|b|,}{\displaystyle 0\leqslant r<|b|,} то есть остаток от деления должен быть неотрицательным числом и по абсолютной величине меньше делителя. Это условие обеспечивает однозначность результатов деления с остатком для всех целых чисел, то есть существует единственное решение уравнения {\displaystyle a=b\cdot q+r}a=b\cdot q+r при заданных выше условиях. Если остаток равен нулю, говорят, что {\displaystyle a}a нацело делится на {\displaystyle b.}b.

Нахождение неполного частного также называют целочисленным делением, а нахождение остатка от деления называют взятием остатка или, неформально, делением по модулю (однако последний термин стоит избегать, так как он может привести к путанице с делением в кольце или группе вычетов по аналогии со сложением или умножением по модулю).

Примеры

При делении с остатком положительного числа {\displaystyle a=78}a=78 на {\displaystyle b=33}b=33 получаем неполное частное {\displaystyle q=2}q=2 и остаток {\displaystyle r=12}r=12.

Проверка: {\displaystyle 78=33\cdot 2+12.}78=33\cdot 2+12.

При делении с остатком отрицательного числа {\displaystyle a=-78}a=-78 на {\displaystyle b=33}b=33 получаем неполное частное {\displaystyle q=-3}q=-3 и остаток {\displaystyle r=21}r=21.

Проверка: {\displaystyle -78=33\cdot (-3)+21.}-78=33\cdot (-3)+21.

При делении с остатком отрицательного числа {\displaystyle a=-9}{\displaystyle a=-9} на {\displaystyle b=-13}{\displaystyle b=-13} получаем неполное частное {\displaystyle q=1}{\displaystyle q=1} и остаток {\displaystyle r=4}r = 4.

Проверка: {\displaystyle -9=1\cdot (-13)+4.}{\displaystyle -9=1\cdot (-13)+4.}

При делении с остатком положительного числа {\displaystyle a=9}{\displaystyle a=9} на {\displaystyle b=90}{\displaystyle b=90} получаем неполное частное {\displaystyle q=0}q=0 и остаток {\displaystyle r=9}{\displaystyle r=9}.

Проверка: {\displaystyle 9=90\cdot 0+9.}{\displaystyle 9=90\cdot 0+9.}

При делении с остатком числа {\displaystyle a=78}a=78 на {\displaystyle b=26}b=26 получаем неполное частное {\displaystyle q=3}q=3 и остаток {\displaystyle r=0}r=0, то есть деление выполняется нацело.

Операция деления с остатком может быть определена не только для целых чисел, но и для других математических объектов (например, для многочленов), см. ниже.

Объяснение:

можно лучший ответ

0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота