1. Схематически записываем условие Есть две команды: (1) ×3 и (2) -5 Тут я ввожу обозначения: в скобках некий "код" команды, а далее обозначение, что именно она делает. Команда с кодом 1 умножает на три, с кодом 2 - вычитает 5. Теперь, что нам надо получить: 8 ⇒ 36, т.е. из 8 получить 36.
2. Анализируем, какое число может быть перед выполнением последней (т.е. пятой) команды. Применим к результату команды, обратные к (1) и (2). Действие, обратное умножению - это деление, вычитанию - сложение. Для (1) получим 36/3 = 12, т.е. в результате выполнения первых четырех (пока в неизвестном порядке) команд должно получиться 12. Для (2) получим 36+5 = 41.
3. Теперь анализируем, какой могла бы быть третья команда Чтобы получить 12 после (1), нужно взять число 12/3 = 4. Чтобы получить 12 после (2), нужно взять число 4+5=9. Получить 41 после (1) невозможно, поскольку 41 на 3 не делится нацело. Чтобы получить 41 после (2), нужно взять число 41+5=46. Итак, имеем три числа-кандидата. 46 выглядит подозрительно, потому что получить его можно только из 51 при поскольку 46 на 3 не делится и не может быть получено при А получить 8 ⇒ 51 за две возможные операции не получится. Поэтому 46 отбрасываем.
4. Анализируем, какой могла бы быть вторая по порядку команда Получить 4 после (1) нельзя, потому что 4 не делится на 3. Чтобы получить 4 после (2), нужно взять число 4+5=9. Чтобы получить 9 после (1), нужно взять число 9/3 = 3. Чтобы получить 9 после (2), нужно взять число 9+5=14.
5. Рассматриваем, что можно получить из исходного числа а) 8 после (1) дает 8×3 = 24 и получить 3, 9 или 14 из 24 при одной из имеющихся команд невозможно. б) 8 после (2) дает 8-5 = 3 - это и есть решение проблемы.
Объяснение:
1. Пронумеруем разряды:
3-й разряд - 4;
2-й разряд - 1;
1-й разряд - 5;
0-й разряд - 3.
4153₈=4·8³+1·8²+5·8¹+3·8⁰
2. 4153₈=4·8³+1·8²+5·8¹+3·8⁰=2048+16+40+3=2155₁₀
3. 125/8=15 (5)
15/8=1 (7)
(1)
125₁₀=175₈
4. Пронумеруем разряды:
2-й разряд - A;
1-й разряд - 6;
0-й разряд - E;
A6E₁₆=(10)(6)(14)=10·16²+6·16¹+14·16⁰
5. A6E₁₆=10·16²+6·16¹+14·16⁰=2560+96+14=2670₁₀
6. 350/16=21 (14=E)
21/16=1 (5)
(1)
350₁₀=15E₁₆
7. 247/2=123 (1)
123/2=61 (1)
61/2=30 (1)
30/2=15 (0)
15/2=7 (1)
7/2=3 (1)
3/2=1 (1)
(1)
247₁₀=11110111₂
247/8=30 (7)
30/8=3 (6)
(3)
247₁₀=367₈
247/16=7 (15=F)
(7)
247₁₀=7F₁₆
Получившиеся числа между собой равны, так как имеют одинаковое число в десятичной системе счисления.
Есть две команды: (1) ×3 и (2) -5
Тут я ввожу обозначения: в скобках некий "код" команды, а далее обозначение, что именно она делает. Команда с кодом 1 умножает на три, с кодом 2 - вычитает 5.
Теперь, что нам надо получить: 8 ⇒ 36, т.е. из 8 получить 36.
2. Анализируем, какое число может быть перед выполнением последней (т.е. пятой) команды.
Применим к результату команды, обратные к (1) и (2).
Действие, обратное умножению - это деление, вычитанию - сложение.
Для (1) получим 36/3 = 12, т.е. в результате выполнения первых четырех (пока в неизвестном порядке) команд должно получиться 12.
Для (2) получим 36+5 = 41.
3. Теперь анализируем, какой могла бы быть третья команда
Чтобы получить 12 после (1), нужно взять число 12/3 = 4.
Чтобы получить 12 после (2), нужно взять число 4+5=9.
Получить 41 после (1) невозможно, поскольку 41 на 3 не делится нацело.
Чтобы получить 41 после (2), нужно взять число 41+5=46.
Итак, имеем три числа-кандидата.
46 выглядит подозрительно, потому что получить его можно только из 51 при поскольку 46 на 3 не делится и не может быть получено при А получить 8 ⇒ 51 за две возможные операции не получится. Поэтому 46 отбрасываем.
4. Анализируем, какой могла бы быть вторая по порядку команда
Получить 4 после (1) нельзя, потому что 4 не делится на 3.
Чтобы получить 4 после (2), нужно взять число 4+5=9.
Чтобы получить 9 после (1), нужно взять число 9/3 = 3.
Чтобы получить 9 после (2), нужно взять число 9+5=14.
5. Рассматриваем, что можно получить из исходного числа
а) 8 после (1) дает 8×3 = 24 и получить 3, 9 или 14 из 24 при одной из имеющихся команд невозможно.
б) 8 после (2) дает 8-5 = 3 - это и есть решение проблемы.
6. Устанавливаем цепочку преобразований (код команды в скобках).
8-5 = 3 (2)
3х3 = 9 (1)
9-5 = 4 (2)
4х3 = 12 (1)
12х3 = 36 (1)
ответ: 21211 - набор команд