из курса вам известно, что цифры десятичной записи числа – это просто коэффициенты его представления в виде суммы степеней числа – основания системы счисления:
при переводе чисел из десятичной системы счисления в римскую мы и воспользовались этим правилом (444 = 400 + 40 + 4; 2986 = 2000 + 900 + 80 + 6).
при записи чисел значение каждой цифры зависит от ее положения. место для цифры в числе называется разрядом, а количество цифр в числе разрядностью. на самом деле числа можно записывать как сумму степеней не только числа 10, но и любого другого натурального числа, большего 1.
определение. развернутой формой записи числа называется такая запись: а4а3а2а1а0 = а4*q4 + a3*q3 + a2*q2 + a1*q1 + a0*q0 , где а4,а3,а2,а1,а0 –цифры числа, q –основание степени.
пример1. получить развернутую форму числа 7512410.
решение:
а4 = 7, а3 = 5, а2 =1 ,а1 =2, а0 =4, q=10
4 3 2 1 0
75 12410 = 7*104 + 5*103 + 1*102 + 2*101 + 4*100.
пример2. получить развернутую форму числа 1123.
решение:
2 1 0
1123 = 1*32 + 1*31 +2*30
пример3. получить развернутую форму числа 176,218.
решение: 21 0-1-2а8=176, 218=1*82+7*81+6*80+2*8-1+1*8-2 для самостоятельной работы: 1. запишите в развернутом виде числа: а8=143511,62а2=100111а10=143,511а16=1а3,5с12. запишите в свернутой форме число: 9*101+1*100+5*10-1+3*10-2a*162+1*161+c*160+3*16-1
Первый условно назовем "я - компьютер". Вы превращаетесь в Исполнителя и с железной тупостью выполняете алгоритм - инструкцию за инструкцией, каждый раз выписывая на бумаге результат. Если у Вас много времени и Вы, как и компьютер, не делаете ошибок, то рано или поздно нужный результат будет получен.
Второй назовем "я - человек". Вы напрягаете свой мозг и определяете, что именно делает алгоритм, после чего проводите нужные вычисления. В этом варианте обычно к результату приходят быстрее.
Попробуем второй путь.
Вначале полагаем, что s=0, n=12. Далее следует цикл, в котором i последовательно принимает значения 1, 2, ... 10. s=s+"что-то" говорит нам о том, что в s накапливается некая сумма, для чего s предварительно обнулялось. А что именно накапливается? n-i. При проходах по циклу это будут значения n-1, n-2, ... n-10. У нас n=12, поэтому в s будет накапливаться сумма 11+10+9+...+2. Или, это удобнее записать как 2+3+4+...+9+10+11. Это сумма арифметической прогрессии из 10 членов и ее можно найти по формуле суммы арифметической прогрессии. Если лениво вспоминать формулу, можно просто сложить эти числа. А можно поступить, как поступил в свое время Гаусс: заметить, что 2+11=13, 3+10=13, 4+9=13 и таких пар 5. И найти результат 5×13=65. Такая вот победа мозга над рутиной))) ответ: 65
§1. о системах счисления.
n4. развернутая форма записи числаиз курса вам известно, что цифры десятичной записи числа – это просто коэффициенты его представления в виде суммы степеней числа – основания системы счисления:
25076 = 2*10000 + 5*1000 + 0*100 + 7*10 + 6*1 = 2*104 +5*103 + 0*102 +7*101+6*100
при переводе чисел из десятичной системы счисления в римскую мы и воспользовались этим правилом (444 = 400 + 40 + 4; 2986 = 2000 + 900 + 80 + 6).
при записи чисел значение каждой цифры зависит от ее положения. место для цифры в числе называется разрядом, а количество цифр в числе разрядностью. на самом деле числа можно записывать как сумму степеней не только числа 10, но и любого другого натурального числа, большего 1.
определение. развернутой формой записи числа называется такая запись: а4а3а2а1а0 = а4*q4 + a3*q3 + a2*q2 + a1*q1 + a0*q0 , где а4,а3,а2,а1,а0 –цифры числа, q –основание степени.
пример1. получить развернутую форму числа 7512410.
решение:
а4 = 7, а3 = 5, а2 =1 ,а1 =2, а0 =4, q=10
4 3 2 1 0
75 12410 = 7*104 + 5*103 + 1*102 + 2*101 + 4*100.
пример2. получить развернутую форму числа 1123.
решение:
2 1 0
1123 = 1*32 + 1*31 +2*30
пример3. получить развернутую форму числа 176,218.
решение: 21 0-1-2а8=176, 218=1*82+7*81+6*80+2*8-1+1*8-2 для самостоятельной работы: 1. запишите в развернутом виде числа: а8=143511,62а2=100111а10=143,511а16=1а3,5с12. запишите в свернутой форме число: 9*101+1*100+5*10-1+3*10-2a*162+1*161+c*160+3*16-1Первый условно назовем "я - компьютер". Вы превращаетесь в Исполнителя и с железной тупостью выполняете алгоритм - инструкцию за инструкцией, каждый раз выписывая на бумаге результат. Если у Вас много времени и Вы, как и компьютер, не делаете ошибок, то рано или поздно нужный результат будет получен.
Второй назовем "я - человек". Вы напрягаете свой мозг и определяете, что именно делает алгоритм, после чего проводите нужные вычисления. В этом варианте обычно к результату приходят быстрее.
Попробуем второй путь.
Вначале полагаем, что s=0, n=12.
Далее следует цикл, в котором i последовательно принимает значения 1, 2, ... 10.
s=s+"что-то" говорит нам о том, что в s накапливается некая сумма, для чего s предварительно обнулялось.
А что именно накапливается? n-i. При проходах по циклу это будут значения n-1, n-2, ... n-10.
У нас n=12, поэтому в s будет накапливаться сумма 11+10+9+...+2. Или, это удобнее записать как 2+3+4+...+9+10+11.
Это сумма арифметической прогрессии из 10 членов и ее можно найти по формуле суммы арифметической прогрессии. Если лениво вспоминать формулу, можно просто сложить эти числа. А можно поступить, как поступил в свое время Гаусс: заметить, что 2+11=13, 3+10=13, 4+9=13 и таких пар 5. И найти результат 5×13=65. Такая вот победа мозга над рутиной)))
ответ: 65