Сколько наборов значений переменных будет содержать таблица истинности логической функции F(a, b, c, d, e, f, g)? Выберите один из вариантов:
1) семь значений;
2) количество переменных функции, умноженное на 2;
3) 2n, где n=7 (7 – количество переменных).
(кто ответит правильно)
Для удобства построения таблицы истинности введем логические переменные.
Обозначим 2*2=4 через a, 3*3=9 - через b.
Тогда высказывание примет вид:
Для этого выражения и построим таблицу истинности.
2. Для доказательства равносильности указанных выражений можно построить таблицы истинности и сравнить их.
Как видно, НЕСОВПАДЕНИЕ полное, т.е. ни при каком сочетании a и b выражения не равносильны. Это подтверждается теорией - имеются законы де-Моргана, в которых еще присутствует общее отрицание или в правой. или в левой части.
n=5;
Var
ar:array[1..n] of integer;
ar2:array[1..n] of integer;
i,k:integer;
function prost(a:integer):boolean;
var i:integer;
b:boolean;
begin
b:=true;
for i:=2 to a div 2 do
if a mod i=0 then
begin;
b:=false;
break;
end;
if a=1 then b:=false;
prost:=b;
end;
begin;
randomize;
k:=0;
for i:=1 to n do
begin;
ar[i]:=random(101);
write(ar[i]:4);
end;
writeln;
for i:=1 to n do
if prost(ar[i]) then
begin;
inc(k);
ar2[k]:=ar[i];
write(ar2[k]:4);
end;
end.