Для удобства построения таблицы истинности введем логические переменные.
Обозначим 2*2=4 через a, 3*3=9 - через b.
Тогда высказывание примет вид:
Для этого выражения и построим таблицу истинности.
2. Для доказательства равносильности указанных выражений можно построить таблицы истинности и сравнить их.
Как видно, НЕСОВПАДЕНИЕ полное, т.е. ни при каком сочетании a и b выражения не равносильны. Это подтверждается теорией - имеются законы де-Моргана, в которых еще присутствует общее отрицание или в правой. или в левой части.
Для удобства построения таблицы истинности введем логические переменные.
Обозначим 2*2=4 через a, 3*3=9 - через b.
Тогда высказывание примет вид:
Для этого выражения и построим таблицу истинности.
2. Для доказательства равносильности указанных выражений можно построить таблицы истинности и сравнить их.
Как видно, НЕСОВПАДЕНИЕ полное, т.е. ни при каком сочетании a и b выражения не равносильны. Это подтверждается теорией - имеются законы де-Моргана, в которых еще присутствует общее отрицание или в правой. или в левой части.
Для удобства построения таблицы истинности введем логические переменные.
Обозначим 2*2=4 через a, 3*3=9 - через b.
Тогда высказывание примет вид:
Для этого выражения и построим таблицу истинности.
2. Для доказательства равносильности указанных выражений можно построить таблицы истинности и сравнить их.
Как видно, НЕСОВПАДЕНИЕ полное, т.е. ни при каком сочетании a и b выражения не равносильны. Это подтверждается теорией - имеются законы де-Моргана, в которых еще присутствует общее отрицание или в правой. или в левой части.
Объяснение:
Для удобства построения таблицы истинности введем логические переменные.
Обозначим 2*2=4 через a, 3*3=9 - через b.
Тогда высказывание примет вид:
Для этого выражения и построим таблицу истинности.
2. Для доказательства равносильности указанных выражений можно построить таблицы истинности и сравнить их.
Как видно, НЕСОВПАДЕНИЕ полное, т.е. ни при каком сочетании a и b выражения не равносильны. Это подтверждается теорией - имеются законы де-Моргана, в которых еще присутствует общее отрицание или в правой. или в левой части.
Объяснение: