Укажите какие из высказываний предыдущего истинны (1), какие - должны (0), а какие относятся к числу тех, истинность которых трудно или невозможно установить (+/-)
Предметы Информатика 10 класс Информация и информационные процессы Представление числовой информации в компьютере
7. Форматы представления чисел в компьютере
Теория:
Для хранения чисел в памяти компьютера используется два формата: целочисленный (естественная форма) и с плавающей точкой (нормализованная форма) (точка — разделительный знак для целой и дробной части числа).
Целочисленный формат (формат с фиксированной точкой) используется для представления в компьютере целых (англ. integer) положительных и отрицательных чисел. Для этого, как правило, используются форматы, кратные байту: 1, 2, 4 байта.
В форме с фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой (или точки), отделяющей целую часть от дробной.
Эта форма проста и привычна для большинства пользователей, но имеет небольшой диапазон представления чисел и поэтому не всегда пригодна при вычислениях. Если же в результате какой-либо арифметической операции получается число, выходящее за допустимый диапазон, то происходит переполнение разрядной сетки, и все дальнейшие вычисления теряют смысл.
Однобайтовое представление применяется только для положительных целых чисел. В этом формате отсутствует знаковый разряд. Наибольшее двоичное число, которое может быть записано при байта, равно 11111111, что в десятичной системе счисления соответствует числу 25510.
Для положительных и отрицательных целых чисел обычно используется 2 и 4 байта, при этом старший бит выделяется под знак числа: 0 - плюс, 1 - минус.
Самое большое (по модулю) целое число со знаком, которое может поместиться в 2-байтовом формате, это число 0111111111111111, то есть при подобного кодирования можно представить числа от −32 76810 до 32 76710.
Обрати внимание!
Если число вышло за указанные границы, произойдет переполнение! Поэтому при работе с большими целыми числами под них выделяется больше места, например 4 байта.
Формат с плавающей точкой (нормализованная форма) используется для представления в компьютере действительных чисел (англ. real). Числа с плавающей точкой размещаются, как правило, в 4 или 8 байтах.
Нормализованная форма представления чисел обеспечивает огромный диапазон их записи и является основной в современных ЭВМ.
Представление целого положительного числа в компьютере
Для представления целого положительного числа в компьютере используется следующее правило:
- число переводится в двоичную систему;
- результат дополняется нулями слева в пределах выбранного формата;
- последний разряд слева является знаковым, в положительном числе он равен 0.
Например, положительное число +13510 в зависимости от формата представления в компьютере будет иметь следующий вид:
- для формата в виде 1 байта - 10000111 (отсутствует знаковый разряд);
- для формата в виде 2 байтов - 0000000010000111;
- для формата в виде 4 байтов - 00000000000000000000000010000111.
Представление целого отрицательного числа в компьютере
Для представления целого отрицательного числа в компьютере используется дополнительный код. Такое представление позволяет заменить операцию вычитания числа операцией сложения с дополнительным кодом этого числа. Знаковый разряд целых отрицательных чисел всегда равен 1.
Для представления целого отрицательного числа в компьютере используется следующее правило:
- число без знака переводится в двоичную систему;
- результат дополняется нулями слева в пределах выбранного формата;
- полученное число переводится в обратный код (нули заменяются единицами, а единицы - нулями);
- к полученному коду прибавляется 1.
Обратный код для положительного двоичного числа совпадает с его прямым кодом, а для отрицательного числа нужно во всех разрядах, кроме знакового, нули заменить единицами и наоборот.
Дополнительный код для положительного числа совпадает с его прямым кодом, а для отрицательного числа образуется путем прибавления 1 к обратному коду.
Отрицательное число может быть представлено в виде 2 или 4 байт.
Например, представим число −13510 в 2-байтовом формате:
- 13510® 10000111 (перевод десятичного числа без знака в двоичный код);
- 0000000010000111(дополнение двоичного числа нулями слева в пределах формата);
- 0000000010000111® 1111111101111000(перевод в обратный код);
- 1111111101111000® 1111111101111001 (перевод в дополнительный код).
Представление вещественного (действительного) числа в компьютере
Вещественное число может быть представлено в экспоненциальном виде, например:
1600000010=0,16⋅108
−0,000015610=−0,156⋅10−4
В этом формате вещественное число (R) представляется в виде произведения мантиссы (m) и основания системы счисления (P) в целой степени (n), называемой порядком.
Представим это в общем виде, как: R=m⋅Pn.
Порядок n указывает, на какое количество позиций и в каком направлении должна сместиться в мантиссе точка (запятая), отделяющая дробную часть от целой. Мантисса, как правило, нормализуется, то есть представляется в виде правильной дроби 0 < m < 1.
Ну, поскольку уточнения по задаче не получил, буду считать, что цифра 1 может встречаться ровно два раза в КАЖДОЙ комбинаций (в противном случае ответ, конечно, будет другой):
Всего используется 4 знака.Нормализуем последовательность к нулю , от этого количество комбинаций не изменится: было : 111111 - 44444 стало: 00000 - 33333
Исключаем из общего количества комбинаций комбинации с двумя единицами (всего 9): 11ххх 1х1хх 1хх1х 1ххх1 х11хх х1х1х х1хх1 хх11х хх1х1 ххх11 значимыми остаются только 3 разряда из 5. 333 в 4-ричной системе счиления равно 63 в 10-ричной. - именно столько комбинаций будет при условии, что два разряда выставлены в единицы. 9х63=563 - столько комбинаций будет всего.
Предметы Информатика 10 класс Информация и информационные процессы Представление числовой информации в компьютере
7. Форматы представления чисел в компьютере
Теория:
Для хранения чисел в памяти компьютера используется два формата: целочисленный (естественная форма) и с плавающей точкой (нормализованная форма) (точка — разделительный знак для целой и дробной части числа).
Целочисленный формат (формат с фиксированной точкой) используется для представления в компьютере целых (англ. integer) положительных и отрицательных чисел. Для этого, как правило, используются форматы, кратные байту: 1, 2, 4 байта.
В форме с фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой (или точки), отделяющей целую часть от дробной.
Эта форма проста и привычна для большинства пользователей, но имеет небольшой диапазон представления чисел и поэтому не всегда пригодна при вычислениях. Если же в результате какой-либо арифметической операции получается число, выходящее за допустимый диапазон, то происходит переполнение разрядной сетки, и все дальнейшие вычисления теряют смысл.
Однобайтовое представление применяется только для положительных целых чисел. В этом формате отсутствует знаковый разряд. Наибольшее двоичное число, которое может быть записано при байта, равно 11111111, что в десятичной системе счисления соответствует числу 25510.
Для положительных и отрицательных целых чисел обычно используется 2 и 4 байта, при этом старший бит выделяется под знак числа: 0 - плюс, 1 - минус.
Самое большое (по модулю) целое число со знаком, которое может поместиться в 2-байтовом формате, это число 0111111111111111, то есть при подобного кодирования можно представить числа от −32 76810 до 32 76710.
Обрати внимание!
Если число вышло за указанные границы, произойдет переполнение! Поэтому при работе с большими целыми числами под них выделяется больше места, например 4 байта.
Формат с плавающей точкой (нормализованная форма) используется для представления в компьютере действительных чисел (англ. real). Числа с плавающей точкой размещаются, как правило, в 4 или 8 байтах.
Нормализованная форма представления чисел обеспечивает огромный диапазон их записи и является основной в современных ЭВМ.
Представление целого положительного числа в компьютере
Для представления целого положительного числа в компьютере используется следующее правило:
- число переводится в двоичную систему;
- результат дополняется нулями слева в пределах выбранного формата;
- последний разряд слева является знаковым, в положительном числе он равен 0.
Например, положительное число +13510 в зависимости от формата представления в компьютере будет иметь следующий вид:
- для формата в виде 1 байта - 10000111 (отсутствует знаковый разряд);
- для формата в виде 2 байтов - 0000000010000111;
- для формата в виде 4 байтов - 00000000000000000000000010000111.
Представление целого отрицательного числа в компьютере
Для представления целого отрицательного числа в компьютере используется дополнительный код. Такое представление позволяет заменить операцию вычитания числа операцией сложения с дополнительным кодом этого числа. Знаковый разряд целых отрицательных чисел всегда равен 1.
Для представления целого отрицательного числа в компьютере используется следующее правило:
- число без знака переводится в двоичную систему;
- результат дополняется нулями слева в пределах выбранного формата;
- полученное число переводится в обратный код (нули заменяются единицами, а единицы - нулями);
- к полученному коду прибавляется 1.
Обратный код для положительного двоичного числа совпадает с его прямым кодом, а для отрицательного числа нужно во всех разрядах, кроме знакового, нули заменить единицами и наоборот.
Дополнительный код для положительного числа совпадает с его прямым кодом, а для отрицательного числа образуется путем прибавления 1 к обратному коду.
Отрицательное число может быть представлено в виде 2 или 4 байт.
Например, представим число −13510 в 2-байтовом формате:
- 13510® 10000111 (перевод десятичного числа без знака в двоичный код);
- 0000000010000111(дополнение двоичного числа нулями слева в пределах формата);
- 0000000010000111® 1111111101111000(перевод в обратный код);
- 1111111101111000® 1111111101111001 (перевод в дополнительный код).
Представление вещественного (действительного) числа в компьютере
Вещественное число может быть представлено в экспоненциальном виде, например:
1600000010=0,16⋅108
−0,000015610=−0,156⋅10−4
В этом формате вещественное число (R) представляется в виде произведения мантиссы (m) и основания системы счисления (P) в целой степени (n), называемой порядком.
Представим это в общем виде, как: R=m⋅Pn.
Порядок n указывает, на какое количество позиций и в каком направлении должна сместиться в мантиссе точка (запятая), отделяющая дробную часть от целой. Мантисса, как правило, нормализуется, то есть представляется в виде правильной дроби 0 < m < 1.
Всего используется 4 знака.Нормализуем последовательность к нулю , от этого количество комбинаций не изменится:
было : 111111 - 44444
стало: 00000 - 33333
Исключаем из общего количества комбинаций комбинации с двумя единицами (всего 9):
11ххх 1х1хх 1хх1х 1ххх1
х11хх х1х1х х1хх1
хх11х хх1х1
ххх11
значимыми остаются только 3 разряда из 5.
333 в 4-ричной системе счиления равно 63 в 10-ричной. - именно столько комбинаций будет при условии, что два разряда выставлены в единицы.
9х63=563 - столько комбинаций будет всего.