в школе 16 классов, в каждом классе по 32 ученика, директору школы сказали,что ученик 8б класса Петров Вася выграл бесплатную поездку на мальдивы ,какое количество информации получил деректор школы
Унарная система счисления – система счисления с основанием 1. Используется, например, при подсчёте небольшого количества предметов: когда подсчитывается очередной предмет ставится единица (или зарубка, черточка, точка или любая другая отметка, также можно откладывать камешки, например). Количество таких единиц совпадает с количеством предметов.
Позиционная система счисления – система счисления, в которой значение цифры зависит от места, на котором она стоит. Например, в десятичной системе стоимость цифры возрастает в 10 раз, если она сдвигается на одну позицию влево: 1 в записи числа 321 означает просто один, а в числе 213 – уже 10.
Непозиционная система счисления – система счисления, в которой значение цифры не зависит от того места, на котором она стоит. Обычно примером непозиционной системы счисления называют римские числа, хотя это не совсем верно: если цифра с меньшим номиналом стоит перед цифрой с большим номиналом, то её значение вычитается из большей цифры, например, XI = 11, но IX = 10 - 1 = 9. Другие примеры – древнеегипетские числа, числа племён майя.
С пунктом В связано наибольшее количество точек - ему соответствует П6. Пункт Е - единственный, который не связан с В - на его роль претендует только П2. Только пункт К имеет связь ровно с тремя вершинами - по таблице ему подходит П4.
Имеем:
В - П6
Е - П2
К - П4
Зная, что вершина Д связана с Е, определим по таблице, что ей подходит П7 (П4 уже занята пунктом К). Точке Г соответствует П3.
Осталось посчитать расстояния всевозможных маршрутов от В до Е и выбрать кратчайший.
В-Д = П6-П7 = 20
Д-Е = П7-П2 = 15
В-Д-Е = 20+15 = 35
В-К = П6-П4 = 25
К-Е = П4-П2 = 5
В-К-Е = 25+5 = 30
В-Г = П6-П3 = 10
Г-К = П3-П4 = 10
К-Е = П4-П2 = 5
В-Г-К-Е = 10+10+5 = 25
25 < 30 < 35
Таким образом, длина кратчайшего маршрута - 25.
Вообще, при решении подобных задач старайтесь искать какие-нибудь зацепки - например, вершины с таким количеством соседей, которого нет у других вершин (вроде вершин В и К в этой задаче). Где-то можно использовать метод исключения и т.п.
Унарная система счисления – система счисления с основанием 1. Используется, например, при подсчёте небольшого количества предметов: когда подсчитывается очередной предмет ставится единица (или зарубка, черточка, точка или любая другая отметка, также можно откладывать камешки, например). Количество таких единиц совпадает с количеством предметов.
Позиционная система счисления – система счисления, в которой значение цифры зависит от места, на котором она стоит. Например, в десятичной системе стоимость цифры возрастает в 10 раз, если она сдвигается на одну позицию влево: 1 в записи числа 321 означает просто один, а в числе 213 – уже 10.
Непозиционная система счисления – система счисления, в которой значение цифры не зависит от того места, на котором она стоит. Обычно примером непозиционной системы счисления называют римские числа, хотя это не совсем верно: если цифра с меньшим номиналом стоит перед цифрой с большим номиналом, то её значение вычитается из большей цифры, например, XI = 11, но IX = 10 - 1 = 9. Другие примеры – древнеегипетские числа, числа племён майя.
Не попавшую на рисунок вершину обозначим К.
С пунктом В связано наибольшее количество точек - ему соответствует П6. Пункт Е - единственный, который не связан с В - на его роль претендует только П2. Только пункт К имеет связь ровно с тремя вершинами - по таблице ему подходит П4.
Имеем:
В - П6
Е - П2
К - П4
Зная, что вершина Д связана с Е, определим по таблице, что ей подходит П7 (П4 уже занята пунктом К). Точке Г соответствует П3.
Осталось посчитать расстояния всевозможных маршрутов от В до Е и выбрать кратчайший.
В-Д = П6-П7 = 20
Д-Е = П7-П2 = 15
В-Д-Е = 20+15 = 35
В-К = П6-П4 = 25
К-Е = П4-П2 = 5
В-К-Е = 25+5 = 30
В-Г = П6-П3 = 10
Г-К = П3-П4 = 10
К-Е = П4-П2 = 5
В-Г-К-Е = 10+10+5 = 25
25 < 30 < 35
Таким образом, длина кратчайшего маршрута - 25.
Вообще, при решении подобных задач старайтесь искать какие-нибудь зацепки - например, вершины с таким количеством соседей, которого нет у других вершин (вроде вершин В и К в этой задаче). Где-то можно использовать метод исключения и т.п.